Natl Sci Open
Volume 1, Number 3, 2022
Special Topic: Novel Optoelectronic Devices
Article Number 20220019
Number of page(s) 20
Section Information Sciences
Published online 03 August 2022
  • Bogaerts W, Pérez D, Capmany J, et al. Programmable photonic circuits. Nature 2020; 586: 207-216. [Article] [Google Scholar]
  • Carolan J, Harrold C, Sparrow C, et al. Universal linear optics. Science 2015; 349: 711-716. [Article] [Google Scholar]
  • Wang J, Paesani S, Ding Y, et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 2018; 360: 285-291. [Article] [Google Scholar]
  • Li S, Zhang S, Feng X, et al. Programmable coherent linear quantum operations with high-dimensional optical spatial modes. Phys Rev Appl 2020; 14: 024027. [Article] [Google Scholar]
  • Allen L, Beijersbergen MW, Spreeuw RJC, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 1992; 45: 8185-8189. [Article] [Google Scholar]
  • Kulkarni G, Sahu R, Magaña-Loaiza OS, et al. Single-shot measurement of the orbital-angular-momentum spectrum of light. Nat Commun 2017; 8: 1054. [Article] [Google Scholar]
  • Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons. Nature 2001; 412: 313-316. [Article] [Google Scholar]
  • Malik M, Erhard M, Huber M, et al. Multi-photon entanglement in high dimensions. Nat Photon 2016; 10: 248-252. [Article] [Google Scholar]
  • Uribe-Patarroyo N, Fraine A, Simon DS, et al. Object identification using correlated orbital angular momentum states. Phys Rev Lett 2013; 110: 043601. [Article] [Google Scholar]
  • Fickler R, Lapkiewicz R, Plick WN, et al. Quantum entanglement of high angular momenta. Science 2012; 338: 640-643. [Article] [Google Scholar]
  • Reck M, Zeilinger A, Bernstein HJ, et al. Experimental realization of any discrete unitary operator. Phys Rev Lett 1994; 73: 58-61. [Article] [Google Scholar]
  • Yu J, Zhou C, Jia W, et al. Three-dimensional Dammann vortex array with tunable topological charge. Appl Opt 2012; 51: 2485. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Deng D, Li Y, Han Y, et al. Perfect vortex in three-dimensional multifocal array. Opt Express 2016; 24: 28270. [Article] [Google Scholar]
  • Mehmood MQ, Mei S, Hussain S, et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv Mater 2016; 28: 2533-2539. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Jin Z, Janoschka D, Deng J, et al. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight 2021; 1: 5. [Article] [CrossRef] [Google Scholar]
  • Ni J, Huang C, Zhou LM, et al. Multidimensional phase singularities in nanophotonics. Science 2021; 374: eabj0039. [Article] [Google Scholar]
  • Babazadeh A, Erhard M, Wang F, et al. High-dimensional single-photon quantum gates: Concepts and experiments. Phys Rev Lett 2017; 119: 180510. [Article] [Google Scholar]
  • Gao X, Krenn M, Kysela J, et al. Arbitrary d-dimensional Pauli X gates of a flying qudit. Phys Rev A 2019; 99: 023825. [Article] [Google Scholar]
  • Fontaine NK, Ryf R, Chen H, et al. Laguerre-Gaussian mode sorter. Nat Commun 2019; 10: 1865. [Article] [Google Scholar]
  • Schlederer F, Krenn M, Fickler R, et al. Cyclic transformation of orbital angular momentum modes. New J Phys 2016; 18: 043019. [Article] [Google Scholar]
  • Brandt F, Hiekkamäki M, Bouchard F, et al. High-dimensional quantum gates using full-field spatial modes of photons. Optica 2020; 7: 98. [Article] [Google Scholar]
  • Labroille G, Denolle B, Jian P, et al. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Opt Express 2014; 22: 15599. [Article] [Google Scholar]
  • Slussarenko S, Karimi E, Piccirillo B, et al. Universal unitary gate for single-photon spin-orbit four-dimensional states. Phys Rev A 2009; 80: 022326. [Article] [Google Scholar]
  • Li S, Zhao P, Feng X, et al. Measuring the orbital angular momentum spectrum with a single point detector. Opt Lett 2018; 43: 4607. [Article] [Google Scholar]
  • Schmid M, Steinwandt R, Müller-Quade J, et al. Decomposing a matrix into circulant and diagonal factors. Linear Algebra its Appl 2000; 306: 131-143. [Article] [Google Scholar]
  • Huhtanen M, Perämäki A. Factoring matrices into the product of circulant and diagonal matrices. J Fourier Anal Appl 2015; 21: 1018-1033. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Lukens JM, Lougovski P. Frequency-encoded photonic qubits for scalable quantum information processing. Optica 2017; 4: 8. [Article] [Google Scholar]
  • Lu HH, Lukens JM, Peters NA, et al. Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing. Phys Rev Lett 2018; 120: 030502. [Article] [Google Scholar]
  • Tang R, Tanemura T, Nakano Y. Integrated reconfigurable unitary optical mode converter using MMI couplers. IEEE Photon Technol Lett 2017; 29: 971-974. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Saygin MY, Kondratyev IV, Dyakonov IV, et al. Robust architecture for programmable universal unitaries. Phys Rev Lett 2020; 124: 010501. [Article] [Google Scholar]
  • Yao E, Franke-Arnold S, Courtial J, et al. Fourier relationship between angular position and optical orbital angular momentum. Opt Express 2006; 14: 9071-9076. [Article] [Google Scholar]
  • Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators. Adv Opt Photon 2016; 8: 200. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Staude I, Schilling J. Metamaterial-inspired silicon nanophotonics. Nat Photon 2017; 11: 274-284. [Article] [Google Scholar]
  • Pinnell J, Rodríguez-Fajardo V, Forbes A. Single-step shaping of the orbital angular momentum spectrum of light. Opt Express 2019; 27: 28009. [Article] [Google Scholar]
  • Berkhout GCG, Lavery MPJ, Courtial J, et al. Efficient sorting of orbital angular momentum states of light. Phys Rev Lett 2010; 105: 153601. [Article] [Google Scholar]
  • Lavery MPJ, Robertson DJ, Berkhout GCG, et al. Refractive elements for the measurement of the orbital angular momentum of a single photon. Opt Express 2012; 20: 2110. [Article] [Google Scholar]
  • Potoček V, Miatto FM, Mirhosseini M, et al. Quantum Hilbert hotel. Phys Rev Lett 2015; 115: 160505. [Article] [Google Scholar]
  • Mirhosseini M, Malik M, Shi Z, et al. Efficient separation of the orbital angular momentum eigenstates of light. Nat Commun 2013; 4: 2781. [Article] [Google Scholar]
  • Leach J, Padgett MJ, Barnett SM, et al. Measuring the orbital angular momentum of a single photon. Phys Rev Lett 2002; 88: 257901. [Article] [Google Scholar]
  • Zhao P, Li S, Feng X, et al. Measuring the complex orbital angular momentum spectrum of light with a mode-matching method. Opt Lett 2017; 42: 1080. [Article] [Google Scholar]
  • Clements WR, Humphreys PC, Metcalf BJ, et al. Optimal design for universal multiport interferometers. Optica 2016; 3: 1460. [Article] [Google Scholar]
  • D′Ambrosio V, Carvacho G, Agresti I, et al. Tunable two-photon quantum interference of structured light. Phys Rev Lett 2019; 122: 013601. [Article] [Google Scholar]
  • Wang XY, Zhao SH, Dong C, et al. Orbital angular momentum-encoded measurement device independent quantum key distribution under atmospheric turbulence. Quantum Inf Process 2019; 18: 304. [Article] [Google Scholar]
  • Wen Y, Chremmos I, Chen Y, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys Rev Lett 2018; 120: 193904. [Article] [Google Scholar]
  • Yang Y, Zhao Q, Liu L, et al. Manipulation of orbital-angular-momentum spectrum using pinhole plates. Phys Rev Appl 2019; 12: 064007. [Article] [Google Scholar]
  • Rahimi-Keshari S, Broome MA, Fickler R, et al. Direct characterization of linear-optical networks. Opt Express 2013; 21: 13450. [Article] [Google Scholar]
  • Morizur JF, Nicholls L, Jian P, et al. Programmable unitary spatial mode manipulation. J Opt Soc Am A 2010; 27: 2524. [Article] [Google Scholar]
  • Faraji-Dana MS, Arbabi E, Arbabi A, et al. Compact folded metasurface spectrometer. Nat Commun 2018; 9: 4196. [Article] [Google Scholar]
  • Cheng R, Zou CL, Guo X, et al. Broadband on-chip single-photon spectrometer. Nat Commun 2019; 10: 4104. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.