Issue
Natl Sci Open
Volume 1, Number 3, 2022
Special Topic: Novel Optoelectronic Devices
Article Number 20220022
Number of page(s) 28
Section Information Sciences
DOI https://doi.org/10.1360/nso/20220022
Published online 27 October 2022
  • Hao Y, Xiang S, Han G, et al. Recent progress of integrated circuits and optoelectronic chips. Sci China Inf Sci 2021; 64: 201401. [Article] [Google Scholar]
  • Wu J, Yue G, Chen W, et al. On-chip optical gas sensors based on group-IV materials. ACS Photonics 2020; 7: 2923-2940. [Article] [CrossRef] [Google Scholar]
  • Jin M, Tang SJ, Chen JH, et al. 1/f-noise-free optical sensing with an integrated heterodyne interferometer. Nat Commun 2021; 12: 1973. [Article] [Google Scholar]
  • Li Y, Li J, Yu H, et al. On-chip photonic microsystem for optical signal processing based on silicon and silicon nitride platforms. Adv Opt Technol 2018; 7: 81-101. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu W, Li M, Guzzon RS, et al. A fully reconfigurable photonic integrated signal processor. Nat Photon 2016; 10: 190-195. [Article] [Google Scholar]
  • Yang L, Ji R, Zhang L, et al. On-chip CMOS-compatible optical signal processor. Opt Express 2012; 20: 13560. [Article] [Google Scholar]
  • Yang L, Zhou T, Jia H, et al. General architectures for on-chip optical space and mode switching. Optica 2018; 5: 180-187. [Article] [Google Scholar]
  • Luo LW, Ophir N, Chen CP, et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun 2014; 5: 3069. [Article] [Google Scholar]
  • Miller SE. Integrated optics: An introduction. Bell Syst Technical J 1969; 48: 2059-2069. [Article] [CrossRef] [Google Scholar]
  • Rahim A, Ryckeboer E, Subramanian AZ, et al. Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. J Lightwave Technol 2017; 35: 639-649. [Article] [Google Scholar]
  • Jalali B, Fathpour S. Silicon photonics. J Lightwave Technol 2006; 24: 4600-4615. [Article] [Google Scholar]
  • Cheng Z, Chen W, Liu T. Mid-Infrared Germanium Photonics. Bellingham: SPIE, 2020 [Google Scholar]
  • Guo R, Chen W, Gao H, et al. Is Ge an excellent material for mid-IR Kerr frequency combs around 3-μm wavelengths?. J Lightwave Technol 2022; 40: 2097-2103. [Article] [Google Scholar]
  • Dietrich CP, Fiore A, Thompson MG, et al. GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits. Laser Photonics Rev 2016; 10: 870-894. [Article] [Google Scholar]
  • Smit MK, Williams KA. Indium phosphide photonic integrated circuits. In: Optical Fiber Communication Conference (OFC). OSA Technical Digest. San Diego, 2020 [Google Scholar]
  • Qi Y, Li Y. Integrated lithium niobate photonics. Nanophotonics 2020; 9: 1287-1320. [Article] [Google Scholar]
  • Xu M, He M, Zhang H, et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat Commun 2020; 11: 3911. [Article] [Google Scholar]
  • Yan Z, Han Y, Lin L, et al. A monolithic InP/SOI platform for integrated photonics. Light Sci Appl 2021; 10: 200. [Article] [Google Scholar]
  • Roelkens G, Liu L, Liang D, et al. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon Rev 2010; 4: 751-779. [Article] [Google Scholar]
  • Han X, Jiang Y, Frigg A, et al. Mode and polarization-division multiplexing based on silicon nitride loaded lithium niobate on insulator platform. Laser Photonics Rev 2022; 16: 2100529. [Article] [Google Scholar]
  • Goyvaerts J, Grabowski A, Gustavsson J, et al. Enabling VCSEL-on-silicon nitride photonic integrated circuits with micro-transfer-printing. Optica 2021; 8: 1573. [Article] [Google Scholar]
  • Xue Y, Han Y, Tong Y, et al. High-performance III-V photodetectors on a monolithic InP/SOI platform. Optica 2021; 8: 1204. [Article] [Google Scholar]
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004; 306: 666-669. [Article] [Google Scholar]
  • Deilmann T, Rohlfing M, Wurstbauer U. Light-matter interaction in van der Waals hetero-structures. J Phys-Condens Matter 2020; 32: 333002. [Article] [Google Scholar]
  • Berger C, Song Z, Li T, et al. Evidence for 2D electron gas behavior in ultrathin epitaxial graphite on a SiC substrate. In: American Physical Society, March Meeting 2004. Montreal, 2004. A17.008 [Google Scholar]
  • Mounet N, Gibertini M, Schwaller P, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotech 2018; 13: 246-252. [Article] [Google Scholar]
  • Bhimanapati GR, Glavin NR, Robinson JA. Chapter three: 2D boron nitride: Synthesis and applications. In: Iacopi F, J Boeckl J, Jagadish C, Eds. Semiconductors and Semimetals. Calfornia: Elsevier, 2016. 101 [Google Scholar]
  • Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater 2017; 2: 17033. [Article] [Google Scholar]
  • Li L, Yu Y, Ye GJ, et al. Black phosphorus field-effect transistors. Nat Nanotech 2014; 9: 372-377. [Article] [Google Scholar]
  • Tao W, Kong N, Ji X, et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem Soc Rev 2019; 48: 2891-2912. [Article] [PubMed] [Google Scholar]
  • Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature 2011; 474: 64-67. [Article] [Google Scholar]
  • Wallace PR. The band theory of graphite. Phys Rev 1947; 71: 622-634. [Article] [Google Scholar]
  • Nair RR, Blake P, Grigorenko AN, et al. Fine structure constant defines visual transparency of graphene. Science 2008; 320: 1308. [Article] [Google Scholar]
  • Bolotin KI, Sikes KJ, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun 2008; 146: 351-355. [Article] [Google Scholar]
  • Zhang H, Virally S, Bao Q, et al. Z-scan measurement of the nonlinear refractive index of graphene. Opt Lett 2012; 37: 1856. [Article] [Google Scholar]
  • Zhang Y, Tang TT, Girit C, et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009; 459: 820-823. [Article] [Google Scholar]
  • Liu H, Liu Y, Zhu D. Chemical doping of graphene. J Mater Chem 2011; 21: 3335-3345. [Article] [Google Scholar]
  • Kosynkin DV, Higginbotham AL, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009; 458: 872-876. [Article] [Google Scholar]
  • Tran V, Soklaski R, Liang Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B 2014; 89: 235319. [Article] [Google Scholar]
  • Long G, Maryenko D, Shen J, et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett 2016; 16: 7768-7773. [Article] [Google Scholar]
  • Kim YJ, Lee Y, Kim K, et al. Light-induced anisotropic morphological dynamics of black phosphorus membranes visualized by dark-field ultrafast electron microscopy. ACS Nano 2020; 14: 11383-11393. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li XJ, Yu JH, Luo K, et al. Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice. Nanotechnology 2018; 29: 174001. [Article] [Google Scholar]
  • Zheng X, Chen R, Shi G, et al. Characterization of nonlinear properties of black phosphorus nanoplatelets with femtosecond pulsed Z-scan measurements. Opt Lett 2015; 40: 3480. [Article] [Google Scholar]
  • Wang G, Slough WJ, Pandey R, et al. Degradation of phosphorene in air: Understanding at atomic level. 2D Mater 2016; 3: 025011. [Article] [CrossRef] [Google Scholar]
  • Laxmi V, Dong W, Wang H, et al. Protecting black phosphorus with selectively adsorbed graphene quantum dot layers. Appl Surf Sci 2021; 538: 148089. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang P, Yang D, Pi X. Toward wafer-scale production of 2D transition metal chalcogenides. Adv Electron Mater 2021; 7: 2100278. [Article] [CrossRef] [Google Scholar]
  • Keum DH, Cho S, Kim JH, et al. Bandgap opening in few-layered monoclinic MoTe2. Nat Phys 2015; 11: 482-486. [Article] [Google Scholar]
  • Wang Y, Xiao J, Zhu H, et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 2017; 550: 487-491. [Article] [Google Scholar]
  • Wang Y, Li L, Yao W, et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett 2015; 15: 4013-4018. [Article] [Google Scholar]
  • Sun J, Shi H, Siegrist T, et al. Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Appl Phys Lett 2015; 107: 153902. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Oyedele AD, Yang S, Liang L, et al. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J Am Chem Soc 2017; 139: 14090-14097. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Iqbal MW, Elahi E, Amin A, et al. A facile route to enhance the mobility of MoTe2 field effect transistor via chemical doping. Superlattice Microstruct 2020; 147: 106698. [Article] [Google Scholar]
  • Moss D. Large and negative self-defocusing optical Kerr nonlinearity in Palladium di-Selenide 2D films. Research Square 2021; https://doi.org/10.21203/rs.3.rs-537813/v1 [Google Scholar]
  • Lu JP. Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 1997; 79: 1297-1300. [Article] [Google Scholar]
  • Castellanos-Gomez A, Vicarelli L, Prada E, et al. Isolation and characterization of few-layer black phosphorus. 2D Mater 2014; 1: 025001. [Article] [CrossRef] [Google Scholar]
  • Ruppert C, Aslan OB, Heinz TF. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett 2014; 14: 6231-6236. [Article] [Google Scholar]
  • Yang J, Lü T, Myint YW, et al. Robust excitons and trions in monolayer MoTe2. ACS Nano 2015; 9: 6603-6609. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhao Y, Qiao J, Yu Z, et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv Mater 2017; 29: 1604230. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhao X, Liu F, Liu D, et al. Thickness-dependent ultrafast nonlinear absorption properties of PtSe2 films with both semiconducting and semimetallic phases. Appl Phys Lett 2019; 115: 263102. [Article] [CrossRef] [Google Scholar]
  • Chow WL, Yu P, Liu F, et al. High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv Mater 2017; 29: 1602969. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang G, Amani M, Chaturvedi A, et al. Optical and electrical properties of two-dimensional palladium diselenide. Appl Phys Lett 2019; 114: 253102. [Article] [CrossRef] [Google Scholar]
  • Zhang J, Wang F, Shenoy VB, et al. Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD). Mater Today 2020; 40: 132-139. [Article] [Google Scholar]
  • Li G, Zhang YY, Guo H, et al. Epitaxial growth and physical properties of 2D materials beyond graphene: From monatomic materials to binary compounds. Chem Soc Rev 2018; 47: 6073-6100. [Article] [PubMed] [Google Scholar]
  • Huo C, Yan Z, Song X, et al. 2D materials via liquid exfoliation: A review on fabrication and applications. Sci Bull 2015; 60: 1994-2008. [Article] [Google Scholar]
  • Zhou D, Zhao L, Li B. Recent progress in solution assembly of 2D materials for wearable energy storage applications. J Energy Chem 2021; 62: 27-42. [Article] [CrossRef] [Google Scholar]
  • Mannix AJ, Kiraly B, Hersam MC, et al. Synthesis and chemistry of elemental 2D materials. Nat Rev Chem 2017; 1: 0014. [Article] [Google Scholar]
  • Chen Z, Qi Y, Chen X, et al. Direct CVD growth of graphene on traditional glass: Methods and mechanisms. Adv Mater 2019; 31: 1803639. [Article] [CrossRef] [Google Scholar]
  • Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006; 312: 1191-1196. [Article] [Google Scholar]
  • Wang X, Cheng Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat Photon 2013; 7: 888-891. [Article] [Google Scholar]
  • Wang J, Cheng Z, Chen Z, et al. High-responsivity graphene-on-silicon slot waveguide photodetectors. Nanoscale 2016; 8: 13206-13211. [Article] [Google Scholar]
  • Chen K, Zhou X, Cheng X, et al. Graphene photonic crystal fibre with strong and tunable light-matter interaction. Nat Photonics 2019; 13: 754-759. [Article] [Google Scholar]
  • Yu Z, Wang Y, Sun B, et al. Hybrid 2D-material photonics with bound states in the continuum. Adv Opt Mater 2019; 7: 1901306. [Article] [CrossRef] [Google Scholar]
  • Cheng Z, Tsang HK, Wang X, et al. In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides. IEEE J Sel Top Quantum Electron 2014; 20: 43-48. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Chu R, Guan C, Bo Y, et al. All-optical graphene-oxide humidity sensor based on a side-polished symmetrical twin-core fiber Michelson interferometer. Sens Actuat B-Chem 2019; 284: 623-627. [Article] [Google Scholar]
  • Ju L, Geng B, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotech 2011; 6: 630-634. [Article] [Google Scholar]
  • Nematpour A, Lisi N, Piegari A, et al. Experimental near infrared absorption enhancement of graphene layers in an optical resonant cavity. Nanotechnology 2019; 30: 445201. [Article] [Google Scholar]
  • Soref RA, Bennett BR. Electrooptical effects in silicon. IEEE J Quantum Electron 1987; 23: 123-129. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Li H, Anugrah Y, Koester SJ, et al. Optical absorption in graphene integrated on silicon waveguides. Appl Phys Lett 2012; 101: 111110. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Gruhler N, Benz C, Jang H, et al. High-quality Si3N4 circuits as a platform for graphene-based nanophotonic devices. Opt Express 2013; 21: 31678. [Article] [Google Scholar]
  • Wang J, Cheng Z, Shu C, et al. Optical absorption in graphene-on-silicon nitride microring resonators. IEEE Photon Technol Lett 2015; 27: 1765-1767. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang J, Cheng Z, Xu K, et al. Optical absorption and thermal nonlinearities in graphene-on-silicon nitride microring resonators. In: Asia Communications and Photonics Conference. Hong Kong: OSA Technical Digest, 2015 [Google Scholar]
  • Kim JT, Choi CG. Graphene-based polymer waveguide polarizer. Opt Express 2012; 20: 3556. [Article] [Google Scholar]
  • Chen B, Meng C, Yang Z, et al. Graphene coated ZnO nanowire optical waveguides. Opt Express 2014; 22: 24276. [Article] [Google Scholar]
  • Lin H, Song Y, Huang Y, et al. Chalcogenide glass-on-graphene photonics. Nat Photon 2017; 11: 798-805. [Article] [Google Scholar]
  • Kou R, Tanabe S, Tsuchizawa T, et al. Characterization of optical absorption and polarization dependence of single-layer graphene integrated on a silicon wire waveguide. Jpn J Appl Phys 2013; 52: 060203. [Article] [Google Scholar]
  • Tan Y, He R, Cheng C, et al. Polarization-dependent optical absorption of MoS2 for refractive index sensing. Sci Rep 2014; 4: 7523. [Article] [Google Scholar]
  • Wei G, Stanev TK, Czaplewski DA, et al. Silicon-nitride photonic circuits interfaced with monolayer MoS2. Appl Phys Lett 2015; 107: 091112. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Gan X, Mak KF, Gao Y, et al. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett 2012; 12: 5626-5631. [Article] [Google Scholar]
  • Kou R, Tanabe S, Tsuchizawa T, et al. Influence of graphene on quality factor variation in a silicon ring resonator. Appl Phys Lett 2014; 104: 091122. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Cai H, Cheng Y, Zhang H, et al. Enhanced linear absorption coefficient of in-plane monolayer graphene on a silicon microring resonator. Opt Express 2016; 24: 24105. [Article] [Google Scholar]
  • Gan X, Shiue RJ, Gao Y, et al. Controlled light-matter interaction in graphene electrooptic devices using nanophotonic cavities and waveguides. IEEE J Sel Top Quantum Electron 2014; 20: 95-105. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Shi Z, Gan L, Xiao TH, et al. All-optical modulation of a graphene-cladded silicon photonic crystal cavity. ACS Photonics 2015; 2: 1513-1518. [Article] [CrossRef] [Google Scholar]
  • Cheng Z, Wang J, Zhu B, et al. Graphene absorption enhancement using silicon slot waveguides. In: 2015 IEEE Photonics Conference (IPC). Reston, 2015. 186 [Google Scholar]
  • Shi Z, Wong CY, Cheng Z, et al. In-plane saturable absorption of graphene on silicon waveguides. In: 2013 Conference on Lasers and Electro-Optics Pacific Rim. Kyoto, 2013 [Google Scholar]
  • Demongodin P, El Dirani H, Lhuillier J, et al. Ultrafast saturable absorption dynamics in hybrid graphene/Si3N4 waveguides. APL Photonics 2019; 4: 076102. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang J, Cheng Z, Xie Q, et al. Relaxation dynamics of optically generated carriers in graphene-on-silicon nitride waveguide devices. In: CLEO: 2015. San Jose, 2015 [Google Scholar]
  • Wang J, Zhang L, Chen Y, et al. Saturable absorption in graphene-on-waveguide devices. Appl Phys Express 2019; 12: 032003. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Qin C, Jia K, Li Q, et al. Electrically controllable laser frequency combs in graphene-fibre microresonators. Light Sci Appl 2020; 9: 185. [Article] [Google Scholar]
  • Cheng Z, Tsang HK, Xu K, et al. Spectral hole burning in silicon waveguides with a graphene layer on top. Opt Lett 2013; 38: 1930. [Article] [Google Scholar]
  • Yu L, Zheng J, Xu Y, et al. Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits. ACS Nano 2014; 8: 11386-11393. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang H, Yang N, Chang L, et al. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photon Res 2020; 8: 468. [Article] [Google Scholar]
  • Sun F, Xia L, Nie C, et al. The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure. Nanotechnology 2018; 29: 135201. [Article] [Google Scholar]
  • Ono M, Hata M, Tsunekawa M, et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat Photonics 2020; 14: 37-43. [Article] [Google Scholar]
  • Sun F, Xia L, Nie C, et al. An all-optical modulator based on a graphene-plasmonic slot waveguide at 1550 nm. Appl Phys Express 2019; 12: 042009. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Jiang L, Huang Q, Chiang KS. Low-power all-optical switch based on a graphene-buried polymer waveguide Mach-Zehnder interferometer. Opt Express 2022; 30: 6786. [Article] [Google Scholar]
  • Qiu C, Zhang C, Zeng H, et al. High-performance graphene-on-silicon nitride all-optical switch based on a Mach-Zehnder interferometer. J Lightwave Technol 2021; 39: 2099-2105. [Article] [Google Scholar]
  • Cheng Z, Tsang HK, Wang X, et al. Polarization dependent loss of graphene-on-silicon waveguides. In: 2013 IEEE Photonics Conference. Bellevue, 2013. 460 [Google Scholar]
  • Pei C, Yang L, Wang G, et al. Broadband graphene/glass hybrid waveguide polarizer. IEEE Photon Technol Lett 2015; 27: 927-930. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Xing Z, Li C, Han Y, et al. Waveguide-integrated graphene spatial mode filters for on-chip mode-division multiplexing. Opt Express 2019; 27: 19188. [Article] [Google Scholar]
  • Cheng Z, Li Z, Xu K, et al. Increase of the grating coupler bandwidth with a graphene overlay. Appl Phys Lett 2014; 104: 111109. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Xing Z, Li C, Han Y, et al. Design of on-chip polarizers based on graphene-on-silicon nanowires. Appl Phys Express 2019; 12: 072001. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Cheng Z, Tsang HK. Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides. Opt Lett 2014; 39: 2206. [Article] [Google Scholar]
  • Wu S, Buckley S, Schaibley JR, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015; 520: 69-72. [Article] [Google Scholar]
  • Li H, Huang ZT, Hong KB, et al. Current modulation of plasmonic nanolasers by breaking reciprocity on hybrid graphene-insulator-metal platforms. Adv Sci 2020; 7: 2001823. [Article] [CrossRef] [Google Scholar]
  • Chen W, Guo R, Wan D, et al. Design of a graphene-enabled dual-mode Kerr frequency comb. IEEE J Sel Top Quantum Electron 2022; 28: 1-7. [Article] [Google Scholar]
  • Li H, Li JH, Hong KB, et al. Plasmonic nanolasers enhanced by hybrid graphene-insulator-metal structures. Nano Lett 2019; 19: 5017-5024. [Article] [Google Scholar]
  • Ye Y, Wong ZJ, Lu X, et al. Monolayer excitonic laser. Nat Photon 2015; 9: 733-737. [Article] [Google Scholar]
  • Salehzadeh O, Djavid M, Tran NH, et al. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett 2015; 15: 5302-5306. [Article] [Google Scholar]
  • Li Y, Zhang J, Huang D, et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat Nanotech 2017; 12: 987-992. [Article] [Google Scholar]
  • Alexander K, Savostianova NA, Mikhailov SA, et al. Electrically tunable optical nonlinearities in graphene-covered sin waveguides characterized by four-wave mixing. ACS Photonics 2017; 4: 3039-3044. [Article] [CrossRef] [Google Scholar]
  • Gu T, Zhou H, McMillan JF, et al. Coherent four-wave mixing on hybrid graphene-silicon photonic crystals. IEEE J Sel Top Quantum Electron 2014; 20: 116-121. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wu J, Yang Y, Qu Y, et al. 2D layered graphene oxide films integrated with micro-ring resonators for enhanced nonlinear optics. Small 2020; 16: 1906563. [Article] [Google Scholar]
  • Qu Y, Wu J, Yang Y, et al. Enhanced four-wave mixing in silicon nitride waveguides integrated with 2D layered graphene oxide films. Adv Opt Mater 2020; 8: 2001048. [Article] [CrossRef] [Google Scholar]
  • Yang Y, Wu J, Xu X, et al. Invited article: Enhanced four-wave mixing in waveguides integrated with graphene oxide. APL Photonics 2018; 3: 120803. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Feng Q, Cong H, Zhang B, et al. Enhanced optical Kerr nonlinearity of graphene/Si hybrid waveguide. Appl Phys Lett 2019; 114: 071104. [Article] [CrossRef] [Google Scholar]
  • Zhou H, Gu T, McMillan JF, et al. Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides. Appl Phys Lett 2014; 105: 091111. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Hu X, Long Y, Ji M, et al. Graphene-silicon microring resonator enhanced all-optical up and down wavelength conversion of QPSK signal. Opt Express 2016; 24: 7168. [Article] [Google Scholar]
  • Gu T, Petrone N, McMillan JF, et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat Photon 2012; 6: 554-559. [Article] [Google Scholar]
  • Ji M, Cai H, Deng L, et al. Enhanced parametric frequency conversion in a compact silicon-graphene microring resonator. Opt Express 2015; 23: 18679. [Article] [Google Scholar]
  • Yang Y, Xu Z, Jiang X, et al. High-efficiency and broadband four-wave mixing in a silicon-graphene strip waveguide with a windowed silica top layer. Photon Res 2018; 6: 965. [Article] [Google Scholar]
  • Yao B, Huang SW, Liu Y, et al. Gate-tunable frequency combs in graphene-nitride microresonators. Nature 2018; 558: 410-414. [Article] [Google Scholar]
  • Reed GT, Mashanovich G, Gardes FY, et al. Silicon optical modulators. Nat Photon 2010; 4: 518-526. [Article] [Google Scholar]
  • Han JH, Boeuf F, Fujikata J, et al. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat Photon 2017; 11: 486-490. [Article] [Google Scholar]
  • Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018; 562: 101-104. [Article] [Google Scholar]
  • Alloatti L, Palmer R, Diebold S, et al. 100 GHz silicon-organic hybrid modulator. Light Sci Appl 2014; 3: e173. [Article] [Google Scholar]
  • Kuo YH, Lee YK, Ge Y, et al. Quantum-confined stark effect in Ge/SiGe quantum wells on si for optical modulators. IEEE J Sel Top Quantum Electron 2006; 12: 1503-1513. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Kim W, Li C, Chaves FA, et al. Tunable graphene-gase dual heterojunction device. Adv Mater 2016; 28: 1845-1852. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lin L, Zhang J, Su H, et al. Towards super-clean graphene. Nat Commun 2019; 10: 1912. [Article] [Google Scholar]
  • Gao Y, Shiue RJ, Gan X, et al. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Lett 2015; 15: 2001-2005. [Article] [Google Scholar]
  • Phare CT, Daniel Lee YH, Cardenas J, et al. Graphene electro-optic modulator with 30 GHz bandwidth. Nat Photon 2015; 9: 511-514. [Article] [Google Scholar]
  • Wang L, Meric I, Huang PY, et al. One-dimensional electrical contact to a two-dimensional material. Science 2013; 342: 614-617. [Article] [Google Scholar]
  • Shen PC, Su C, Lin Y, et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 2021; 593: 211-217. [Article] [Google Scholar]
  • Liu M, Yin X, Zhang X. Double-layer graphene optical modulator. Nano Lett 2012; 12: 1482-1485. [Article] [Google Scholar]
  • Dalir H, Xia Y, Wang Y, et al. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photonics 2016; 3: 1564-1568. [Article] [CrossRef] [Google Scholar]
  • Hu Y, Pantouvaki M, Van Campenhout J, et al. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser Photonics Rev 2016; 10: 307-316. [Article] [Google Scholar]
  • Alessandri C, Asselberghs I, Brems S, et al. 5 × 25 Gbit/s WDM transmitters based on passivated graphene-silicon electro-absorption modulators. Appl Opt 2020; 59: 1156. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Mohsin M, Schall D, Otto M, et al. Graphene based low insertion loss electro-absorption modulator on SOI waveguide. Opt Express 2014; 22: 15292. [Article] [Google Scholar]
  • Youngblood N, Anugrah Y, Ma R, et al. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett 2014; 14: 2741-2746. [Article] [Google Scholar]
  • Mittendorff M, Li S, Murphy TE. Graphene-based waveguide-integrated terahertz modulator. ACS Photonics 2017; 4: 316-321. [Article] [CrossRef] [Google Scholar]
  • Cheng Z, Zhu X, Galili M, et al. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12 GHz bandwidth. Nanophotonics 2020; 9: 2377-2385. [Article] [Google Scholar]
  • Giambra MA, Sorianello V, Miseikis V, et al. High-speed double layer graphene electro-absorption modulator on SOI waveguide. Opt Express 2019; 27: 20145. [Article] [Google Scholar]
  • Lee BS, Kim B, Freitas AP, et al. High-performance integrated graphene electro-optic modulator at cryogenic temperature. Nanophotonics 2021; 10: 99-104. [Article] [Google Scholar]
  • Ding Y, Zhu X, Xiao S, et al. Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator. Nano Lett 2015; 15: 4393-4400. [Article] [Google Scholar]
  • Qiu C, Gao W, Vajtai R, et al. Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator. Nano Lett 2014; 14: 6811-6815. [Article] [Google Scholar]
  • Phatak A, Cheng Z, Qin C, et al. Design of electro-optic modulators based on graphene-on-silicon slot waveguides. Opt Lett 2016; 41: 2501. [Article] [Google Scholar]
  • Ansell D, Radko IP, Han Z, et al. Hybrid graphene plasmonic waveguide modulators. Nat Commun 2015; 6: 8846. [Article] [Google Scholar]
  • Ding Y, Guan X, Zhu X, et al. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale 2017; 9: 15576-15581. [Article] [Google Scholar]
  • Hao R, Jiao J, Peng X, et al. Experimental demonstration of a graphene-based hybrid plasmonic modulator. Opt Lett 2019; 44: 2586. [Article] [Google Scholar]
  • Sorianello V, Midrio M, Contestabile G, et al. Graphene-silicon phase modulators with gigahertz bandwidth. Nat Photon 2018; 12: 40-44. [Article] [Google Scholar]
  • Mohsin M, Neumaier D, Schall D, et al. Experimental verification of electro-refractive phase modulation in graphene. Sci Rep 2015; 5: 10967. [Article] [Google Scholar]
  • Shu H, Su Z, Huang L, et al. Significantly high modulation efficiency of compact graphene modulator based on silicon waveguide. Sci Rep 2018; 8: 991. [Article] [Google Scholar]
  • Mao D, Cheng C, Wang F, et al. Device architectures for low voltage and ultrafast graphene integrated phase modulators. IEEE J Sel Top Quantum Electron 2021; 27: 1-9. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Yue G, Xing Z, Hu H, et al. Graphene-based dual-mode modulators. Opt Express 2020; 28: 18456. [Article] [Google Scholar]
  • Wang J, Qiu H, Wei Z, et al. Design of a graphene-based waveguide-integrated multimode phase modulator. IEEE Photonics J 2021; 13: 1-6. [Article] [NASA ADS] [Google Scholar]
  • Yan S, Zhu X, Frandsen LH, et al. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nat Commun 2017; 8: 14411. [Article] [Google Scholar]
  • Gan S, Cheng C, Zhan Y, et al. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale 2015; 7: 20249-20255. [Article] [Google Scholar]
  • Yu T, Wang F, Xu Y, et al. Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based schottky-junction photodetectors. Adv Mater 2016; 28: 4912-4919. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Hu M, Yan Y, Huang K, et al. Performance improvement of graphene/silicon photodetectors using high work function metal nanoparticles with plasma effect. Adv Opt Mater 2018; 6: 1701243. [Article] [CrossRef] [Google Scholar]
  • Koppens FHL, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotech 2014; 9: 780-793. [Article] [Google Scholar]
  • Marconi S, Giambra MA, Montanaro A, et al. Photo thermal effect graphene detector featuring 105 Gbit s−1 NRZ and 120 Gbit s−1 PAM4 direct detection. Nat Commun 2021; 12: 806. [Article] [Google Scholar]
  • Wang Y, Yin W, Han Q, et al. Bolometric effect in a waveguide-integrated graphene photodetector. Chin Phys B 2016; 25: 118103. [Article] [NASA ADS] [Google Scholar]
  • Gan X, Shiue RJ, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photon 2013; 7: 883-887. [Article] [Google Scholar]
  • Pospischil A, Humer M, Furchi MM, et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nat Photon 2013; 7: 892-896. [Article] [Google Scholar]
  • Cheng Z, Chen X, Wong CY, et al. Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator. IEEE Photonics J 2012; 4: 1510-1519. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Palmer J, Kunc J, Hu Y, et al. Controlled epitaxial graphene growth within removable amorphous carbon corrals. Appl Phys Lett 2014; 105: 023106. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Deokar G, Avila J, Razado-Colambo I, et al. Towards high quality CVD graphene growth and transfer. Carbon 2015; 89: 82-92. [Article] [CrossRef] [Google Scholar]
  • Schall D, Neumaier D, Mohsin M, et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photonics 2014; 1: 781-784. [Article] [CrossRef] [Google Scholar]
  • Goykhman I, Sassi U, Desiatov B, et al. On-chip integrated, silicon-graphene plasmonic schottky photodetector with high responsivity and avalanche photogain. Nano Lett 2016; 16: 3005-3013. [Article] [Google Scholar]
  • Gao Y, Zhou G, Zhao N, et al. High-performance chemical vapor deposited graphene-on-silicon nitride waveguide photodetectors. Opt Lett 2018; 43: 1399. [Article] [Google Scholar]
  • Gao Y, Tao L, Tsang HK, et al. Graphene-on-silicon nitride waveguide photodetector with interdigital contacts. Appl Phys Lett 2018; 112: 211107. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Schall D, Porschatis C, Otto M, et al. Graphene photodetectors with a bandwidth >76 GHz fabricated in a 6″ wafer process line. J Phys D-Appl Phys 2017; 50: 124004. [Article] [Google Scholar]
  • Schuler S, Schall D, Neumaier D, et al. Controlled generation of a p-n junction in a waveguide integrated graphene photodetector. Nano Lett 2016; 16: 7107-7112. [Article] [Google Scholar]
  • Li J, Yin Y, Guo J, et al. Hybrid ultrathin-silicon/graphene waveguide photodetector with a loop mirror reflector. Opt Express 2020; 28: 10725. [Article] [Google Scholar]
  • Zhou H, Gu T, McMillan JF, et al. Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides. Appl Phys Lett 2016; 108: 111106. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Schuler S, Schall D, Neumaier D, et al. Graphene photodetector integrated on a photonic crystal defect waveguide. ACS Photonics 2018; 5: 4758-4763. [Article] [CrossRef] [Google Scholar]
  • Wang Y, Zhang Y, Jiang Z, et al. Ultra-compact high-speed polarization division multiplexing optical receiving chip enabled by graphene-on-plasmonic slot waveguide photodetectors. Adv Opt Mater 2021; 9: 2001215. [Article] [CrossRef] [Google Scholar]
  • Guo J, Li J, Liu C, et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light Sci Appl 2020; 9: 29. [Article] [Google Scholar]
  • Ma P, Salamin Y, Baeuerle B, et al. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics 2019; 6: 154-161. [Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Wang G, Dai T, Lvy Z, et al. Integrated high responsivity photodetectors based on graphene/glass hybrid waveguide. Opt Lett 2016; 41: 4214. [Article] [Google Scholar]
  • Wang J, Cheng Z, Chen Z, et al. Graphene photodetector integrated on silicon nitride waveguide. J Appl Phys 2015; 117: 144504. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Mišeikis V, Marconi S, Giambra MA, et al. Ultrafast, zero-bias, graphene photodetectors with polymeric gate dielectric on passive photonic waveguides. ACS Nano 2020; 14: 11190-11204. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang J, Cheng Z, Zhu B, et al. Photoresponse of graphene-on-silicon nitride microring resonator. In: Conference on Lasers and Electro-Optics. San Jose, 2016 [Google Scholar]
  • Wang Y, Li X, Jiang Z, et al. Ultrahigh-speed graphene-based optical coherent receiver. Nat Commun 2021; 12: 5076. [Article] [Google Scholar]
  • Lischke S, Peczek A, Morgan JS, et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat Photon 2021; 15: 925-931. [Article] [Google Scholar]
  • Rouvalis E, Chtioui M, van Dijk F, et al. 170 GHz uni-traveling carrier photodiodes for InP-based photonic integrated circuits. Opt Express 2012; 20: 20090. [Article] [Google Scholar]
  • Youngblood N, Chen C, Koester SJ, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat Photon 2015; 9: 247-252. [Article] [Google Scholar]
  • Chen C, Youngblood N, Peng R, et al. Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics. Nano Lett 2017; 17: 985-991. [Article] [Google Scholar]
  • Huang L, Dong B, Guo X, et al. Waveguide-integrated black phosphorus photodetector for mid-infrared applications. ACS Nano 2019; 13: 913-921. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Yin Y, Cao R, Guo J, et al. High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 μm. Laser Photonics Rev 2019; 1900032. [Article] [Google Scholar]
  • Wang Y, Yu Z, Zhang Z, et al. Bound-states-in-continuum hybrid integration of 2D platinum diselenide on silicon nitride for high-speed photodetectors. ACS Photonics 2020; 7: 2643-2649. [Article] [CrossRef] [Google Scholar]
  • Yang C, Qin S, Zuo Y, et al. Waveguide Schottky photodetector with tunable barrier based on Ti3C2Tx/p-Si van der Waals heterojunction. Nanophotonics 2021; 10: 4133-4139. [Article] [Google Scholar]
  • Wu Z, Zhang T, Chen Y, et al. Integrating graphene/MoS2 heterostructure with SiNx waveguide for visible light detection at 532 nm wavelength. Phys Status Solidi RRL 2019; 13: 1800338. [Article] [Google Scholar]
  • Flöry N, Ma P, Salamin Y, et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat Nanotechnol 2020; 15: 118-124. [Article] [Google Scholar]
  • Shiue RJ, Gao Y, Wang Y, et al. High-responsivity graphene-boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett 2015; 15: 7288-7293. [Article] [Google Scholar]
  • Gao Y, Zhou G, Tsang HK, et al. High-speed van der Waals heterostructure tunneling photodiodes integrated on silicon nitride waveguides. Optica 2019; 6: 514. [Article] [Google Scholar]
  • Gao Y, Tsang HK, Shu C. A silicon nitride waveguide-integrated chemical vapor deposited graphene photodetector with 38 GHz bandwidth. Nanoscale 2018; 10: 21851-21856. [Article] [Google Scholar]
  • Ma Z, Kikunaga K, Wang H, et al. Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity. ACS Photonics 2020; 7: 932-940. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Li G, Yoon KY, Zhong X, et al. A modular synthetic approach for band-gap engineering of armchair graphene nanoribbons. Nat Commun 2018; 9: 1687. [Article] [Google Scholar]
  • Li X, Tao L, Chen Z, et al. Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl Phys Rev 2017; 4: 021306. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Guo H, Hu Z, Liu ZB, et al. Stacking of 2D materials. Adv Funct Mater 2021; 31: 2007810. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018; 556: 43-50. [Article] [Google Scholar]
  • Tanoh AOA, Gauriot N, Delport G, et al. Directed energy transfer from monolayer WS2 to near-infrared emitting PbS-CdS quantum dots. ACS Nano 2020; 14: 15374-15384. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Huo N, Gupta S, Konstantatos G. MoS2-HgTe quantum dot hybrid photodetectors beyond 2 μm. Adv Mater 2017; 29: 1606576. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang Y, Li Y, Sun J, et al. A micro broadband photodetector based on single wall carbon nanotubes-graphene heterojunction. J Lightwave Technol 2022; 40: 149-155. [Article] [Google Scholar]
  • Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat Nanotech 2012; 7: 363-368. [Article] [Google Scholar]
  • Ahn GH, Amani M, Rasool H, et al. Strain-engineered growth of two-dimensional materials. Nat Commun 2017; 8: 608. [Article] [Google Scholar]
  • Dai Z, Liu L, Zhang Z. Strain engineering of 2D materials: Issues and opportunities at the interface. Adv Mater 2019; 31: 1805417. [Article] [CrossRef] [Google Scholar]
  • Yao B, Yu C, Wu Y, et al. Graphene-enhanced brillouin optomechanical microresonator for ultrasensitive gas detection. Nano Lett 2017; 17: 4996-5002. [Article] [Google Scholar]
  • Tan T, Yuan Z, Zhang H, et al. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat Commun 2021; 12: 6716. [Article] [Google Scholar]
  • Saeed M, Ghaffar A, Rehman S, et al. Graphene-based plasmonic waveguides: A mini review. Plasmonics 2022; 17: 901-911. [Article] [Google Scholar]
  • Zhou W, Cheng Z, Chen X, et al. Subwavelength engineering in silicon photonic devices. IEEE J Sel Top Quantum Electron 2019; 25: 1-13. [Article] [Google Scholar]
  • Nong J, Tang L, Lan G, et al. Enhanced graphene plasmonic mode energy for highly sensitive molecular fingerprint retrieval. Laser Photonics Rev 2021; 15: 2000300. [Article] [Google Scholar]
  • Xiao TH, Cheng Z, Goda K. Graphene-on-silicon hybrid plasmonic-photonic integrated circuits. Nanotechnology 2017; 28: 245201. [Article] [Google Scholar]
  • Cheng Z, Goda K. Design of waveguide-integrated graphene devices for photonic gas sensing. Nanotechnology 2016; 27: 505206. [Article] [Google Scholar]
  • Yao B, Liu Y, Huang SW, et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures. Nat Photon 2018; 12: 22-28. [Article] [Google Scholar]
  • Li Y, An N, Lv Z, et al. Nonlinear co-generation of graphene plasmons for optoelectronic logic gates. Research Square 2022; https://doi.org/10.21203/rs.3.rs-1204181/v1 [Google Scholar]
  • Bernabé S, Wilmart Q, Hasharoni K, et al. Silicon photonics for terabit/s communication in data centers and exascale computers. Solid-State Electron 2021; 179: 107928. [Article] [Google Scholar]
  • Khan A, Islam SM, Ahmed S, et al. Direct CVD growth of graphene on technologically important dielectric and semiconducting substrates. Adv Sci 2018; 5: 1800050. [Article] [CrossRef] [Google Scholar]
  • Rogalski A. HgCdTe infrared detector material: History, status and outlook. Rep Prog Phys 2005; 68: 2267-2336. [Article] [Google Scholar]
  • Li H, Alradhi H, Jin Z, et al. Novel type-II InAs/AlSb core-shell nanowires and their enhanced negative photocurrent for efficient photodetection. Adv Funct Mater 2018; 28: 1705382. [Article] [CrossRef] [Google Scholar]
  • Li J, Dehzangi A, Razeghi M. Performance analysis of infrared heterojunction phototransistors based on Type-II superlattices. Infrared Phys Tech 2021; 113: 103641. [Article] [CrossRef] [Google Scholar]
  • Chen W, Wu J, Wan D, et al. Grating couplers beyond silicon TPA wavelengths based on MPW. J Phys D-Appl Phys 2021; 55: 015109. [Article] [Google Scholar]
  • Kang J, Cheng Z, Zhou W, et al. Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides. Opt Lett 2017; 42: 2094. [Article] [Google Scholar]
  • Cheng Z, Chen X, Wong CY, et al. Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide. Opt Lett 2012; 37: 1217. [Article] [Google Scholar]
  • Guo R, Gao H, Liu T, et al. Ultra-thin mid-infrared silicon grating coupler. Opt Lett 2022; 47: 1226. [Article] [Google Scholar]
  • Xiao TH, Zhao Z, Zhou W, et al. High-Q germanium optical nanocavity. Photon Res 2018; 6: 925. [Article] [Google Scholar]
  • Xiao TH, Zhao Z, Zhou W, et al. Mid-infrared high-Q germanium microring resonator. Opt Lett 2018; 43: 2885. [Article] [Google Scholar]
  • Nong J, Tang L, Lan G, et al. Combined visible plasmons of ag nanoparticles and infrared plasmons of graphene nanoribbons for high-performance surface-enhanced raman and infrared spectroscopies. Small 2021; 17: 2004640. [Article] [Google Scholar]
  • Wang L, Han L, Guo W, et al. Hybrid Dirac semimetal-based photodetector with efficient low-energy photon harvesting. Light Sci Appl 2022; 11: 53. [Article] [Google Scholar]
  • He Q, Wang Y, Chen W, et al. Advances in short-wavelength mid-infrared silicon photonics. Infrared Laser Eng, 2022; 51: 20220043 [CrossRef] [Google Scholar]
  • Zuo Y, Gao Y, Qin S, et al. Broadband multi-wavelength optical sensing based on photothermal effect of 2D MXene films. Nanophotonics 2020; 9: 123-131. [Article] [Google Scholar]
  • Han S, Chen W, Hu H, et al. Characterization method of a mid-infrared graphene-on-silicon microring with a monochromatic laser. J Opt Soc Am B 2020; 37: 1683. [Article] [Google Scholar]
  • Wang J, Zhang X, Wei Z, et al. Design of a dual-mode graphene-on-microring resonator for optical gas sensing. IEEE Access 2021; 9: 56479-56485. [Article] [CrossRef] [Google Scholar]
  • Li Y, Li Z, Chi C, et al. Plasmonics of 2D nanomaterials: Properties and applications. Adv Sci 2017; 4: 1600430. [Article] [CrossRef] [Google Scholar]
  • Schedin F, Geim AK, Morozov SV, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater 2007; 6: 652-655. [Article] [Google Scholar]
  • Zhang E, Xing Z, Wan D, et al. Surface-enhanced Raman spectroscopy chips based on two-dimensional materials beyond graphene. J Semicond 2021; 42: 051001. [Article] [Google Scholar]
  • Oh SH, Altug H, Jin X, et al. Nanophotonic biosensors harnessing van der Waals materials. Nat Commun 2021; 12: 3824. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.