Issue |
Natl Sci Open
Volume 2, Number 4, 2023
Special Topic: Two-dimensional Materials and Devices
|
|
---|---|---|
Article Number | 20230002 | |
Number of page(s) | 32 | |
Section | Materials Science | |
DOI | https://doi.org/10.1360/nso/20230002 | |
Published online | 21 June 2023 |
- Žutić I, Fabian J, Das Sarma S. Spintronics: Fundamentals and applications. Rev Mod Phys 2004; 76: 323-410. [Article] [CrossRef] [Google Scholar]
- Yuan HY, Cao Y, Kamra A, et al. Quantum magnonics: When magnon spintronics meets quantum information science. Phys Rep 2022; 965: 1-74. [Article] [Google Scholar]
- Kasahara Y, Ohnishi T, Mizukami Y, et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 2018; 559: 227-231. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gong C, Zhang X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019; 363: eaav4450. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang Z, Gutiérrez-Lezama I, Ubrig N, et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat Commun 2018; 9: 2516. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang Z, Sapkota D, Taniguchi T, et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett 2018; 18: 4303-4308. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kezilebieke S, Huda MN, Vaňo V, et al. Topological superconductivity in a van der Waals heterostructure. Nature 2020; 588: 424-428. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Souchkov AB, Simpson JR, Quijada M, et al. Exchange interaction effects on the optical properties of LuMnO3. Phys Rev Lett 2003; 91: 027203. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Mochizuki M, Furukawa N, Nagaosa N. Theory of spin-phonon coupling in multiferroic manganese perovskites RMnO3. Phys Rev B 2011; 84: 144409. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sivadas N, Okamoto S, Xu X, et al. Stacking-dependent magnetism in bilayer CrI3. Nano Lett 2018; 18: 7658-7664. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Webster L, Liang L, Yan JA. Distinct spin-lattice and spin-phonon interactions in monolayer magnetic CrI3. Phys Chem Chem Phys 2018; 20: 23546-23555. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang X, Du K, Fredrik Liu YY, et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Mater 2016; 3: 031009. [Article] [Google Scholar]
- Sun YJ, Tan QH, Liu XL, et al. Probing the magnetic ordering of antiferromagnetic MnPS3 by Raman spectroscopy. J Phys Chem Lett 2019; 10: 3087-3093. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hu X, Zhao Y, Shen X, et al. Enhanced ferromagnetism and tunable magnetism in Fe3GeTe2 monolayer by strain engineering. ACS Appl Mater Interfaces 2020; 12: 26367-26373. [Article] [Google Scholar]
- Qing X, Li H, Zhong C, et al. Magnetism and spin exchange coupling in strained monolayer CrOCl. Phys Chem Chem Phys 2020; 22: 17255-17262. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Go G, Kim SK, Lee KJ. Topological magnon-phonon hybrid excitations in two-dimensional ferromagnets with tunable chern numbers. Phys Rev Lett 2019; 123: 237207. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang BH, Hou YS, Wang Z, et al. First-principles studies of spin-phonon coupling in monolayer Cr2Ge2Te6. Phys Rev B 2019; 100: 224427. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Huang B, Cenker J, Zhang X, et al. Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3. Nat Nanotechnol 2020; 15: 212-216. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liu S, Granados del Águila A, Bhowmick D, et al. Direct observation of magnon-phonon strong coupling in two-dimensional antiferromagnet at high magnetic fields. Phys Rev Lett 2021; 127: 097401. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li T, Jiang S, Sivadas N, et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat Mater 2019; 18: 1303-1308. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Cenker J, Sivakumar S, Xie K, et al. Reversible strain-induced magnetic phase transition in a van der Waals magnet. Nat Nanotechnol 2022; 17: 256-261. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Baltz V, Manchon A, Tsoi M, et al. Antiferromagnetic spintronics. Rev Mod Phys 2018; 90: 015005. [Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Mirzoyan R, Hadt RG. The dynamic ligand field of a molecular qubit: Decoherence through spin-phonon coupling. Phys Chem Chem Phys 2020; 22: 11249-11265. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Maehrlein SF, Radu I, Maldonado P, et al. Dissecting spin-phonon equilibration in ferrimagnetic insulators by ultrafast lattice excitation. Sci Adv 2018; 4: eaar5164. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Mermin ND, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys Rev Lett 1966; 17: 1133-1136. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017; 546: 270-273. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017; 546: 265-269. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Burch KS, Mandrus D, Park JG. Magnetism in two-dimensional van der Waals materials. Nature 2018; 563: 47-52. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Tian Y, Gray MJ, Ji H, et al. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater 2016; 3: 025035. [Article] [Google Scholar]
- Lee JU, Lee S, Ryoo JH, et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett 2016; 16: 7433-7438. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Du L, Tang J, Zhao Y, et al. Lattice dynamics, phonon chirality, and spin-phonon coupling in 2D itinerant ferromagnet Fe3GeTe2. Adv Funct Mater 2019; 29: 1904734. [Article] [CrossRef] [Google Scholar]
- Lyu BB, Gao YF, Zhang Y, et al. Probing the ferromagnetism and spin wave gap in VI3 by helicity-resolved Raman spectroscopy. Nano Lett 2020; 20: 6024-6031. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yin T, Ulman KA, Liu S, et al. Chiral phonons and giant magneto-optical effect in CrBr3 2D magnet. Adv Mater 2021; 33: 2101618. [Article] [Google Scholar]
- Kozlenko DP, Lis ON, Kichanov SE, et al. Spin-induced negative thermal expansion and spin-phonon coupling in van der Waals material CrBr3. npj Quantum Mater 2021; 6: 19. [Article] [CrossRef] [Google Scholar]
- López-Paz SA, Guguchia Z, Pomjakushin VY, et al. Dynamic magnetic crossover at the origin of the hidden-order in van der Waals antiferromagnet CrSBr. Nat Commun 2022; 13: 4745. [Article] [Google Scholar]
- Gu P, Sun Y, Wang C, et al. Magnetic phase transitions and magnetoelastic coupling in a two-dimensional stripy antiferromagnet. Nano Lett 2022; 22: 1233-1241. [Article] [Google Scholar]
- Hentrich R, Wolter AU , Zotos X, et al. Unusual phonon heat transport in α-RuCl3: Strong spin-phonon scattering and field-induced spin gap. Phys Rev Lett 2018; 120: 117204. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Choe J, Lujan D, Rodriguez-Vega M, et al. Electron-phonon and spin-lattice coupling in atomically thin layers of MnBi2Te4. Nano Lett 2021; 21: 6139-6145. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chen W, Sun Z, Wang Z, et al. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 2019; 366: 983-987. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ni Z, Haglund AV, Wang H, et al. Imaging the Néel vector switching in the monolayer antiferromagnet MnPSe3 with strain-controlled Ising order. Nat Nanotechnol 2021; 16: 782-787. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Du K, Wang X, Liu Y, et al. Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 2016; 10: 1738-1743. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang Y, Ying J, Zhou Z, et al. Emergent superconductivity in an iron-based honeycomb lattice initiated by pressure-driven spin-crossover. Nat Commun 2018; 9: 1914. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotech 2018; 13: 289-293. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Song T, Fei Z, Yankowitz M, et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat Mater 2019; 18: 1298-1302. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Disa AS, Fechner M, Nova TF, et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat Phys 2020; 16: 937-941. [Article] [CrossRef] [Google Scholar]
- Jiang S, Xie H, Shan J, et al. Exchange magnetostriction in two-dimensional antiferromagnets. Nat Mater 2020; 19: 1295-1299. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Song T, Sun QC, Anderson E, et al. Direct visualization of magnetic domains and Moiré magnetism in twisted 2D magnets. Science 2021; 374: 1140-1144. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Du K, Tu Q, Zhang X, et al. Two-dimensional lead(II) halide-based hybrid perovskites templated by acene alkylamines: Crystal structures, optical properties, and piezoelectricity. Inorg Chem 2017; 56: 9291-9302. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sun B, Liu XF, Li XY, et al. Reversible thermochromism and strong ferromagnetism in two-dimensional hybrid perovskites. Angew Chem Int Ed 2020; 59: 203-208. [Article] [CrossRef] [PubMed] [Google Scholar]
- Polyakov AO, Arkenbout AH, Baas J, et al. Coexisting ferromagnetic and ferroelectric order in a CuCl4-based organic-inorganic hybrid. Chem Mater 2012; 24: 133-139. [Article] [CrossRef] [Google Scholar]
- Willett R, Place H, Middleton M. Crystal structures of three new copper(II) halide layered perovskites: Structural, crystallographic, and magnetic correlations. J Am Chem Soc 1988; 110: 8639-8650. [Article] [CrossRef] [Google Scholar]
- Ai Y, Sun R, Liao W‐, et al. Unprecedented ferroelectricity and ferromagnetism in a Cr2+-based two-dimensional hybrid perovskite. Angew Chem Int Ed 2022; 61[Article] [Google Scholar]
- Stead MJ, Day P. Preparation, characterization, and magnetic properties of organic-intercalated two-dimensional ionic ferromagnets (CnH2n+1NH3)2CrCl4 (n = 3, 5, or 12). J Chem Soc Dalton Trans 1982; : 1081. [Article] [CrossRef] [Google Scholar]
- Yaffe O, Chernikov A, Norman ZM, et al. Excitons in ultrathin organic-inorganic perovskite crystals. Phys Rev B 2015; 92: 045414. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang N, Tang H, Shi M, et al. Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced curie temperature in Cr2Ge2Te6 via organic ion intercalation. J Am Chem Soc 2019; 141: 17166-17173. [Article] [CrossRef] [PubMed] [Google Scholar]
- Carteaux V, Ouvrard G, Grenier JC, et al. Magnetic structure of the new layered ferromagnetic chromium hexatellurosilicate Cr2Si2Te6. J Magn Magn Mater 1991; 94: 127-133. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Chen B, Yang JH, Wang HD, et al. Magnetic properties of layered itinerant electron ferromagnet Fe3GeTe2. J Phys Soc Jpn 2013; 82: 124711. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Nikonov KS, Brekhovskikh MN, Egorysheva AV, et al. Chemical vapor transport growth of vanadium(IV) selenide and vanadium(IV) telluride single crystals. Inorg Mater 2017; 53: 1126-1130. [Article] [CrossRef] [Google Scholar]
- Schmidt M, Gooth J, Binnewies M. Preparation and crystal growth of transition metal dichalcogenides. Z Anorg Allg Chem 2020; 646: 1183-1194. [Article] [CrossRef] [Google Scholar]
- Jin W, Kim HH, Ye Z, et al. Raman fingerprint of two terahertz spin wave branches in a two-dimensional honeycomb Ising ferromagnet. Nat Commun 2018; 9: 5122. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Pan S, Bai Y, Tang J, et al. Growth of high-quality CrI3 single crystals and engineering of its magnetic properties via V and Mn doping. J Alloys Compd 2022; 908: 164573. [Article] [CrossRef] [Google Scholar]
- Ahn K, Felser C, Seshadri R, et al. Giant negative magnetoresistance in GdI2. J Alloys Compd 2000; 303-304: 252-256. [Article] [CrossRef] [Google Scholar]
- Tian S, Zhang JF, Li C, et al. Ferromagnetic van der Waals Crystal VI3. J Am Chem Soc 2019; 141: 5326-5333. [Article] [CrossRef] [PubMed] [Google Scholar]
- Binnewies M, Glaum R, Schmidt M, Schmidt P. Chemical Vapor Transport Reactions. Berlin: Walter de Gruyter, 2012 [CrossRef] [Google Scholar]
- Kinomura N, Terao K, Kikkawa S, et al. Synthesis and crystal structure of InP3. Mater Res Bull 1983; 18: 53-57. [Article] [CrossRef] [Google Scholar]
- Zhu C, Lei Z, Song L, et al. Synthesis and growth of GaSe single crystals. J Cryst Growth 2015; 421: 53-57. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Attolini G, Negri M, Besagni T, et al. CVT and PVT growth and characterization of GaS crystals. Mater Sci Eng-B 2020; 261: 114623. [Article] [CrossRef] [Google Scholar]
- Yamamoto N, Endo T, Shimada M, et al. Single crystal growth of α-MnO2. Jpn J Appl Phys 1974; 13: 723-724. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yan JQ, Sales BC, Susner MA, et al. Flux growth in a horizontal configuration: An analog to vapor transport growth. Phys Rev Mater 2017; 1: 023402. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Park CB, Shahee A, Kim KT, et al. Observation of spin-induced ferroelectricity in a layered van der Waals antiferromagnet CuCrP2S6. Adv Elect Mater 2022; 8: 2101072. [Article] [Google Scholar]
- Selter S, Shemerliuk Y, Büchner B, et al. Crystal growth of the quasi-2D quarternary compound AgCrP2S6 by chemical vapor transport. Crystals 2021; 11: 500. [Article] [Google Scholar]
- Lee S, Colombet P, Ouvrard G, et al. A new chain compound of vanadium (III): Structure, metal ordering, and magnetic properties. Mater Res Bull 1986; 21: 917-928. [Article] [CrossRef] [Google Scholar]
- van Bruggen CF, Haange RJ, Wiegers GA, et al. CrSe2, a new layered dichalcogenide. Physica B+C 1980; 99: 166-172. [Article] [CrossRef] [Google Scholar]
- Freitas DC, Weht R, Sulpice A, et al. Ferromagnetism in layered metastable 1 T-CrTe2. J Phys-Condens Matter 2015; 27: 176002. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- McGuire MA, Garlea VO, Kc S, et al. Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe3. Phys Rev B 2017; 95: 144421. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- McGuire MA, DiSalvo FJ. Ni3Cr2P2Q9 (Q = S, Se): New quaternary transition metal chalcogenides with a unique layered structure. Chem Mater 2007; 19: 4600-4605. [Article] [CrossRef] [Google Scholar]
- Yan JQ, Huang Z, Wu W, et al. Vapor transport growth of MnBi2Te4 and related compounds. J Alloys Compd 2022; 906: 164327. [Article] [CrossRef] [Google Scholar]
- Nowka C, Gellesch M, Enrique Hamann Borrero J, et al. Chemical vapor transport and characterization of MnBi2Se4. J Cryst Growth 2017; 459: 81-86. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kim HH, Yang B, Li S, et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc Natl Acad Sci USA 2019; 116: 11131-11136. [Article] [CrossRef] [PubMed] [Google Scholar]
- Haberecht J, Borrmann Η, Kniep R. Refinement of the crystal structure of iron dibromide, FeBr2. Z für Kristallographie-New Cryst Struct 2001; 216: 544. [Article] [Google Scholar]
- Coleman CC, Yamada E. Optimization of the vapor reaction growth of single crystal FeI2. J Cryst Growth 1993; 132: 129-133. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- McCarley RE, Roddy JW, Berry KO. Transport reactions of some vanadium(III) halides. Mixed halide formation. Inorg Chem 1964; 3: 50-54. [Article] [CrossRef] [Google Scholar]
- Hashimoto S, Forster K, Moss SC. Structure refinement of an FeCl3 crystal using a thin plate sample. J Appl Crystlogr 1989; 22: 173-180. [Article] [CrossRef] [Google Scholar]
- Armbruster M, Rotter HW, Thiele G. ChemInform abstract: Preparation and spectroscopic characterization of strontium and barium tetrabromoferrate(III) and the crystal structure of Ba(FeBr4)2. ChemInform 2000; 31: no. [Article] [CrossRef] [Google Scholar]
- Zeng Y, Gu P, Zhao Z, et al. 2D FeOCl: A highly in-plane anisotropic antiferromagnetic semiconductor synthesized via temperature-oscillation chemical vapor transport. Adv Mater 2022; 34: 2108847. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang W, Sun R, He S, et al. Atomic structure, work function and magnetism in layered single crystal VOCl. 2D Mater 2020; 8: 015027. [Article] [Google Scholar]
- Klein J, Pham T, Thomsen JD, et al. Control of structure and spin texture in the van der Waals layered magnet CrSBr. Nat Commun 2022; 13: 5420. [Article] [Google Scholar]
- Kong T, Guo S, Ni D, et al. Crystal structure and magnetic properties of the layered van der Waals compound VBr3. Phys Rev Mater 2019; 3: 084419. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Han J, Nishihara S, Inoue K, et al. On the nature of the structural and magnetic phase transitions in the layered perovskite-like (CH3NH3)2[FeIICl4]. Inorg Chem 2014; 53: 2068-2075. [Article] [CrossRef] [PubMed] [Google Scholar]
- Han J, Nishihara S, Inoue K, et al. High magnetic hardness for the canted antiferromagnetic, ferroelectric, and ferroelastic layered perovskite-like (C2H5NH3)2[FeII Cl4]. Inorg Chem 2015; 54: 2866-2874. [Article] [CrossRef] [PubMed] [Google Scholar]
- Septiany L, Tulip D, Chislov M, et al. Polar structure and two-dimensional heisenberg antiferromagnetic properties of arylamine-based manganese chloride layered organic-inorganic perovskites. Inorg Chem 2021; 60: 15151-15158. [Article] [CrossRef] [PubMed] [Google Scholar]
- Oeckler O, Simon A. Redetermination of the crystal structure of copper dibromide, CuBr2. Z für Kristallographie-New Cryst Struct 2000; 215: 13. [Article] [CrossRef] [Google Scholar]
- Kuindersma SR, Sanchez JP, Haas C. Magnetic and structural investigations on NiI2 and CoI2. Physica B+C 1981; 111: 231-248. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li Y, Chen D, Dong X, et al. Magnetic and electric properties of single crystal MnI2. J Phys-Condens Matter 2020; 32: 335803. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Guo YQ, Tan RQ, Li X, et al. Shape-controlled growth and single-crystal XRD study of submillimeter-sized single crystals of SnO. CrystEngComm 2011; 13: 5677. [Article] [CrossRef] [Google Scholar]
- Solanki GK, Patel DB, Unadkat S, et al. Synthesis and characterization of germanium monosulphide (GeS) single crystals grown using different transporting agents. Pramana 2010; 74: 813-825. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wiedemeier H, Irene EA, Chaudhuri AK. Crystal growth by vapor transport of GeSe, GeSe2, and GeTe and transport mechanism and morphology of GeTe. J Cryst Growth 1972; 13-14: 393-396. [Article] [CrossRef] [Google Scholar]
- Burton LA, Colombara D, Abellon RD, et al. Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem Mater 2013; 25: 4908-4916. [Article] [CrossRef] [Google Scholar]
- Patel S, Chaki SH, Vinodkumar PC. Pure SnSe, In and Sb doped SnSe single crystals – Growth, structural, surface morphology and optical bandgap study. J Cryst Growth 2019; 522: 16-24. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Hahn H, Katscher H. Über chalkogenidhalogenide des galliums. Z Anorg Allg Chem 1963; 321: 85-93. [Article] [CrossRef] [Google Scholar]
- Aoki M, Yamane H, Shimada M, et al. CrN single-crystal growth using Cr-Ga-Na ternary melt. J Cryst Growth 2002; 246: 133-138. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Okada S, Kudou K, Iizumi K, et al. Single-crystal growth and properties of CrB, Cr3B4, Cr2B3 and CrB2 from high-temperature aluminum solutions. J Cryst Growth 1996; 166: 429-435. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Hyde KR, Hooper EW, Waters J, et al. α- and β-ruthenium trichloride. J Less Common Met 1965; 8: 428-434. [Article] [CrossRef] [Google Scholar]
- Hepworth MA, Jack KH. The crystal structure of manganese trifluoride, MnF3. Acta Cryst 1957; 10: 345-351. [Article] [CrossRef] [Google Scholar]
- Schäfer H, Wartenpfuhl F, Weise E. Über Titanchloride. V. Titan(III)-oxychlorid. Zeitschrift für anorganische und allgemeine Chemie, 1958, 295: 268–280 [CrossRef] [Google Scholar]
- Schnering HGV, Collin M, Hassheider M. TiOBr, darstellung, eigenschaften und struktur. Zeitschrift für Anorganische und Allgemeine Chemie, 1972, 387: 137–141 [CrossRef] [Google Scholar]
- Huang B, McGuire MA, May AF, et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat Mater 2020; 19: 1276-1289. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhai B, Du J, Li X, et al. Two-dimensional ferromagnetic materials and related van der Waals heterostructures: A first-principle study. J Semicond 2019; 40: 081509. [Article] [CrossRef] [Google Scholar]
- Zhang J, Yang J, Lin L, et al. An antiferromagnetic two-dimensional material: Chromium diiodides monolayer. J Semicond 2020; 41: 122502. [Article] [CrossRef] [Google Scholar]
- Zhang WB, Qu Q, Zhu P, et al. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J Mater Chem C 2015; 3: 12457-12468. [Article] [CrossRef] [Google Scholar]
- Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018; 563: 94-99. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Dirnberger F, Bushati R, Datta B, et al. Spin-correlated exciton–polaritons in a van der Waals magnet. Nat Nanotechnol 2022; 17: 1060-1064. [Article] [Google Scholar]
- Xu Y, Ray A, Shao YT, et al. Coexisting ferromagnetic-antiferromagnetic state in twisted bilayer CrI3. Nat Nanotechnol 2022; 17: 143-147. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang X, Cao J, Li H, et al. Electronic Raman scattering in the 2D antiferromagnet NiPS3. Sci Adv 2022; 8: eabl7707. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Afanasiev D, Hortensius JR, Matthiesen M, et al. Controlling the anisotropy of a van der Waals antiferromagnet with light. Sci Adv 2021; 7: eabf3096. [Article] [CrossRef] [PubMed] [Google Scholar]
- Song T, Cai X, Tu MWY, et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 2018; 360: 1214-1218. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Webster L, Yan JA. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys Rev B 2018; 98: 144411. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- McGuire M. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals 2017; 7: 121. [Article] [CrossRef] [Google Scholar]
- McGuire MA, Dixit H, Cooper VR, et al. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem Mater 2015; 27: 612-620. [Article] [Google Scholar]
- Jiang X, Liu Q, Xing J, et al. Recent progress on 2D magnets: Fundamental mechanism, structural design and modification. Appl Phys Rev 2021; 8: 031305. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhang Y, Wu X, Lyu BB, et al. Magnetic order-induced polarization anomaly of Raman scattering in 2D magnet CrI3. Nano Lett 2020; 20: 729-734. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Thingstad E, Kamra A, Brataas A, et al. Chiral phonon transport induced by topological magnons. Phys Rev Lett 2019; 122: 107201. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sheikhi B, Kargarian M, Langari A. Hybrid topological magnon-phonon modes in ferromagnetic honeycomb and kagome lattices. Phys Rev B 2021; 104: 045139. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Rahman S, Torres JF, Khan AR, et al. Recent developments in van der Waals antiferromagnetic 2D materials: Synthesis, characterization, and device implementation. ACS Nano 2021; 15: 17175-17213. [Article] [Google Scholar]
- Mai TT, Garrity KF, McCreary A, et al. Magnon-phonon hybridization in 2D antiferromagnet MnPSe3. Sci Adv 2021; 7: eabj3106. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kim K, Lim SY, Lee JU, et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat Commun 2019; 10: 345. [Article] [Google Scholar]
- Kang S, Kim K, Kim BH, et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3. Nature 2020; 583: 785-789. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang X, Cao J, Lu Z, et al. Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals. Nat Mater 2021; 20: 964-970. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hwangbo K, Zhang Q, Jiang Q, et al. Highly anisotropic excitons and multiple phonon bound states in a van der Waals antiferromagnetic insulator. Nat Nanotechnol 2021; 16: 655-660. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang S, Xu R, Luo N, et al. Two-dimensional magnetic materials: Structures, properties and external controls. Nanoscale 2021; 13: 1398-1424. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lee K, Dismukes AH, Telford EJ, et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett 2021; 21: 3511-3517. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang T, Wang Y, Li H, et al. Magnetism and optical anisotropy in van der Waals antiferromagnetic insulator CrOCl. ACS Nano 2019; 13: 11353-11362. [Article] [Google Scholar]
- Pawbake A, Pelini T, Wilson NP, et al. Raman scattering signatures of the strong spin-phonon coupling in the bulk magnetic van der Waals material CrSBr. arXiv preprint, arxiv: 2211.12939, 2022 [Google Scholar]
- Angelkort J, Wölfel A, Schönleber A, et al. Observation of strong magnetoelastic coupling in a first-order phase transition of CrOCl. Phys Rev B 2009; 80: 144416. [Article] [CrossRef] [Google Scholar]
- Wang WJ, Xu XT, Shen J, et al. Spin-phonon coupling in van der Waals antiferromagnet VOCl. Chin Phys B 2021; 30: 107502. [Article] [Google Scholar]
- Fei Z, Huang B, Malinowski P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat Mater 2018; 17: 778-782. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang L, Song L, Dai H, et al. Substrate-modulated ferromagnetism of two-dimensional Fe3GeTe2. Appl Phys Lett 2020; 116: 042402. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhu W, Song C, Han L, et al. van der Waals lattice-induced colossal magnetoresistance in Cr2Ge2Te6 thin flakes. Nat Commun 2022; 13: 6428. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sivadas N, Daniels MW, Swendsen RH, et al. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys Rev B 2015; 91: 235425. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Pei Q, Wang XC, Zou JJ, et al. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3. Front Phys 2018; 13: 137105. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wu J, Yao Y, Lin ML, et al. Spin-phonon coupling in ferromagnetic monolayer chromium tribromide. Adv Mater 2022; 34: 2108506. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Pandey T, Peeters FM, Milošević MV. Pivotal role of magnetic ordering and strain in lattice thermal conductivity of chromium-trihalide monolayers. 2D Mater 2022; 9: 015034. [Article] [Google Scholar]
- Liu Y, Liu Q, Liu Y, et al. Effects of spin-phonon coupling on two-dimensional ferromagnetic semiconductors: A case study of iron and ruthenium trihalides. Nanoscale 2021; 13: 7714-7722. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sun YJ, Pang SM, Zhang J. Review of Raman spectroscopy of two-dimensional magnetic van der Waals materials. Chin Phys B 2021; 30: 117104. [Article] [Google Scholar]
- Padmanabhan H, Poore M, Kim PK, et al. Interlayer magnetophononic coupling in MnBi2Te4. Nat Commun 2022; 13: 1929. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sun YJ, Lai JM, Pang SM, et al. Magneto-Raman study of magnon-phonon coupling in two-dimensional ising antiferromagnetic FePS3. J Phys Chem Lett 2022; 13: 1533-1539. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu Z, Guo K, Hu G, et al. Observation of nonreciprocal magnetophonon effect in nonencapsulated few-layered CrI3. Sci Adv 2020; 6: eabc7628. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jin W, Ye Z, Luo X, et al. Tunable layered-magnetism-assisted magneto-Raman effect in a two-dimensional magnet CrI3. Proc Natl Acad Sci USA 2020; 117: 24664-24669. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- McCreary A, Mai TT, Utermohlen FG, et al. Distinct magneto-Raman signatures of spin-flip phase transitions in CrI3. Nat Commun 2020; 11: 3879. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Vaclavkova D, Palit M, Wyzula J, et al. Magnon polarons in the van der Waals antiferromagnet FePS3. Phys Rev B 2021; 104: 134437. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Ghosh A, Palit M, Maity S, et al. Spin-phonon coupling and magnon scattering in few-layer antiferromagnetic FePS3. Phys Rev B 2021; 103: 064431. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Webster L, Liang L, Yan JA. Correction: Distinct spin-lattice and spin-phonon interactions in monolayer magnetic CrI3. Phys Chem Chem Phys 2022; 24: 17898. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Shin D, Hübener H, De Giovannini U, et al. Phonon-driven spin-floquet magneto-valleytronics in MoS2. Nat Commun 2018; 9: 638. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- He J, Frauenheim T. Optically driven ultrafast magnetic order transitions in two-dimensional ferrimagnetic MXenes. J Phys Chem Lett 2020; 11: 6219-6226. [Article] [CrossRef] [PubMed] [Google Scholar]
- Belvin CA, Baldini E, Ozel IO, et al. Exciton-driven antiferromagnetic metal in a correlated van der Waals insulator. Nat Commun 2021; 12: 4837. [Article] [Google Scholar]
- Zhang XX, Jiang S, Lee J, et al. Spin dynamics slowdown near the antiferromagnetic critical point in atomically thin FePS3. Nano Lett 2021; 21: 5045-5052. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Bae YJ, Wang J, Scheie A, et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 2022; 609: 282-286. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Bartram FM, Leng YC, Wang Y, et al. Ultrafast coherent interlayer phonon dynamics in atomically thin layers of MnBi2Te4. npj Quantum Mater 2022; 7: 84. [Article] [CrossRef] [Google Scholar]
- Ergeçen E, Ilyas B, Mao D, et al. Magnetically brightened dark electron-phonon bound states in a van der Waals antiferromagnet. Nat Commun 2022; 13: 98. [Article] [Google Scholar]
- Gong Y, Hu M, Harris N, et al. Strong laser polarization control of coherent phonon excitation in van der Waals material Fe3GeTe2. npj 2D Mater Appl 2022; 6: 9. [Article] [CrossRef] [Google Scholar]
- Padmanabhan P, Buessen FL, Tutchton R, et al. Coherent helicity-dependent spin-phonon oscillations in the ferromagnetic van der Waals crystal CrI3. Nat Commun 2022; 13: 4473. [Article] [Google Scholar]
- Chumak AV, Vasyuchka VI, Serga AA, et al. Magnon spintronics. Nat Phys 2015; 11: 453-461. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kruglyak VV, Demokritov SO, Grundler D. Magnonics. J Phys D-Appl Phys 2010; 43: 264001. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Mertens F, Mönkebüscher D, Parlak U, et al. Ultrafast coherent THz lattice dynamics coupled to spins in the van der Waals antiferromagnet FePS3. Adv Mater 2023; 35: 2208355. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kim SY, Kim TY, Sandilands LJ, et al. Charge-spin correlation in van der Waals antiferromagnet NiPS3. Phys Rev Lett 2018; 120: 136402. [Article] [CrossRef] [PubMed] [Google Scholar]
- Deng Y, Yu Y, Shi MZ, et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 2020; 367: 895-900. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Coak MJ, Jarvis DM, Hamidov H, et al. Emergent magnetic phases in pressure-tuned van der Waals antiferromagnet FePS3. Phys Rev X 2021; 11: 011024. [Article] [NASA ADS] [Google Scholar]
- Soriano D, Cardoso C, Fernández-Rossier J. Interplay between interlayer exchange and stacking in CrI3 bilayers. Solid State Commun 2019; 299: 113662. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Shao J, Liu Y, Zeng M, et al. Pressure-tuned intralayer exchange in superlattice-like MnBi2Te4/(Bi2Te3)n topological insulators. Nano Lett 2021; 21: 5874-5880. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Bhoi D, Gouchi J, Hiraoka N, et al. Nearly room-temperature ferromagnetism in a pressure-induced correlated metallic state of the van der Waals insulator CrGeTe3. Phys Rev Lett 2021; 127: 217203. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Arneth J, Jonak M, Spachmann S, et al. Uniaxial pressure effects in the two-dimensional van der Waals ferromagnet CrI3. Phys Rev B 2022; 105: L060404. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Pawbake A, Pelini T, Delhomme A, et al. High-pressure tuning of magnon-polarons in the layered antiferromagnet FePS3. ACS Nano 2022; 16: 12656-12665. [Article] [Google Scholar]
- Lv HY, Lu WJ, Luo X, et al. Strain- and carrier-tunable magnetic properties of a two-dimensional intrinsically ferromagnetic semiconductor: CoBr2 monolayer. Phys Rev B 2019; 99: 134416. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhang X, Wang L, Su H, et al. Strain tunability of perpendicular magnetic anisotropy in van der Waals ferromagnets VI3. Nano Lett 2022; 22: 9891-9899. [Article] [Google Scholar]
- Zhong J, Wang M, Liu T, et al. Strain-sensitive ferromagnetic two-dimensional Cr2Te3. Nano Res 2022; 15: 1254-1259. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018; 556: 80-84. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018; 556: 43-50. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Xie H, Luo X, Ye G, et al. Twist engineering of the two-dimensional magnetism in double bilayer chromium triiodide homostructures. Nat Phys 2022; 18: 30-36. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Baibich MN, Broto JM, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett 1988; 61: 2472-2475. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 1989; 39: 4828-4830. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Fert A, Grünberg P, Barthélémy A, et al. Layered magnetic structures: Interlayer exchange coupling and giant magnetoresistance. J Magn Magn Mater 1995; 140-144: 1-8. [Article] [CrossRef] [Google Scholar]
- Moodera JS, Kinder LR, Wong TM, et al. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys Rev Lett 1995; 74: 3273-3276. [Article] [CrossRef] [PubMed] [Google Scholar]
- Miyazaki T, Tezuka N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J Magn Magn Mater 1995; 139: L231-L234. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang QH, Bedoya-Pinto A, Blei M, et al. The magnetic genome of two-dimensional van der Waals materials. ACS Nano 2022; 16: 6960-7079. [Article] [Google Scholar]
- Klein DR, MacNeill D, Lado JL, et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 2018; 360: 1218-1222. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kim HH, Yang B, Patel T, et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett 2018; 18: 4885-4890. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yan Z, Zhang R, Dong X, et al. Significant tunneling magnetoresistance and excellent spin filtering effect in CrI3-based van der Waals magnetic tunnel junctions. Phys Chem Chem Phys 2020; 22: 14773-14780. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Pan L, Huang L, Zhong M, et al. Large tunneling magnetoresistance in magnetic tunneling junctions based on two-dimensional CrX3 (X = Br, I) monolayers. Nanoscale 2018; 10: 22196-22202. [Article] [CrossRef] [PubMed] [Google Scholar]
- Song T, Tu MWY, Carnahan C, et al. Voltage control of a van der Waals spin-filter magnetic tunnel junction. Nano Lett 2019; 19: 915-920. [Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Jiang S, Li L, Wang Z, et al. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat Electron 2019; 2: 159-163. [Article] [CrossRef] [Google Scholar]
- Li X, Lü JT, Zhang J, et al. Spin-dependent transport in van der Waals magnetic tunnel junctions with Fe3GeTe2 electrodes. Nano Lett 2019; 19: 5133-5139. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lin ZZ, Chen X. Ultrathin scattering spin filter and magnetic tunnel junction implemented by ferromagnetic 2D van der Waals material. Adv Electron Mater 2020; 6: 1900968. [Article] [CrossRef] [Google Scholar]
- Albarakati S, Tan C, Chen ZJ, et al. Antisymmetric magnetoresistance in van der Waals Fe3GeTe2/graphite/Fe3GeTe2 trilayer heterostructures. Sci Adv 2019; 5: eaaw0409. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lin H, Yan F, Hu C, et al. Spin-valve effect in Fe3GeTe2/MoS2/Fe3GeTe2 van der Waals heterostructures. ACS Appl Mater Interfaces 2020; 12: 43921-43926. [Article] [Google Scholar]
- Johansen Ø, Risinggård V, Sudbø A, et al. Current control of magnetism in two-dimensional Fe3GeTe2. Phys Rev Lett 2019; 122: 217203. [Article] [CrossRef] [PubMed] [Google Scholar]
- Miron IM, Garello K, Gaudin G, et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 2011; 476: 189-193. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kurebayashi H, Garcia JH, Khan S, et al. Magnetism, symmetry and spin transport in van der Waals layered systems. Nat Rev Phys 2022; 4: 150-166. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang X, Tang J, Xia X, et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci Adv 2019; 5: eaaw8904. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Afanasiev D, Hortensius JR, Ivanov BA, et al. Ultrafast control of magnetic interactions via light-driven phonons. Nat Mater 2021; 20: 607-611. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Disa AS, Nova TF, Cavalleri A. Engineering crystal structures with light. Nat Phys 2021; 17: 1087-1092. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Železný J, Wadley P, Olejník K, et al. Spin transport and spin torque in antiferromagnetic devices. Nat Phys 2018; 14: 220-228. [Article] [CrossRef] [Google Scholar]
- Gomonay O, Baltz V, Brataas A, et al. Antiferromagnetic spin textures and dynamics. Nat Phys 2018; 14: 213-216. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Liu ZQ, Chen H, Wang JM, et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat Electron 2018; 1: 172-177. [Article] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.