Issue |
Natl Sci Open
Volume 2, Number 4, 2023
Special Topic: Two-dimensional Materials and Devices
|
|
---|---|---|
Article Number | 20230009 | |
Number of page(s) | 12 | |
Section | Materials Science | |
DOI | https://doi.org/10.1360/nso/20230009 | |
Published online | 01 June 2023 |
- Mak KF, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett 2010; 105: 136805. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotech 2011; 6: 147-150. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Tang L, Tan J, Nong H, et al. Chemical vapor deposition growth of two-dimensional compound materials: Controllability, material quality, and growth mechanism. Acc Mater Res 2021; 2: 36-47. [Article] [Google Scholar]
- Ji Q, Zhang Y, Gao T, et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett 2013; 13: 3870-3877. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhou J, Lin J, Huang X, et al. A library of atomically thin metal chalcogenides. Nature 2018; 556: 355-359. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jin G, Lee CS, Okello OFN, et al. Heteroepitaxial van der Waals semiconductor superlattices. Nat Nanotechnol 2021; 16: 1092-1098. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li H, Wu J, Yin Z, et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res 2014; 47: 1067-1075. [Article] [Google Scholar]
- Jawaid A, Nepal D, Park K, et al. Mechanism for liquid phase exfoliation of MoS2. Chem Mater 2016; 28: 337-348. [Article] [CrossRef] [Google Scholar]
- Zhang C, Tan J, Pan Y, et al. Mass production of 2D materials by intermediate-assisted grinding exfoliation. Natl Sci Rev 2020; 7: 324-332. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang C, Luo Y, Tan J, et al. High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution. Nat Commun 2020; 11: 3724. [Article] [Google Scholar]
- Tang L, Teng C, Xu R, et al. Controlled growth of wafer-scale transition metal dichalcogenides with a vertical composition gradient for artificial synapses with high linearity. ACS Nano 2022; 16: 12318-12327. [Article] [Google Scholar]
- Cun H, Macha M, Kim HK, et al. Wafer-scale MOCVD growth of monolayer MoS2 on sapphire and SiO2. Nano Res 2019; 12: 2646-2652. [Article] [CrossRef] [Google Scholar]
- Hyun CM, Choi JH, Lee SW, et al. Synthesis mechanism of MoS2 layered crystals by chemical vapor deposition using MoO3 and sulfur powders. J Alloys Compd 2018; 765: 380-384. [Article] [CrossRef] [Google Scholar]
- Shree S, George A, Lehnert T, et al. High optical quality of MoS2 monolayers grown by chemical vapor deposition. 2D Mater 2019; 7: 015011. [Article] [Google Scholar]
- Wu Q, Luo Y, Xie R, et al. Space-confined one-step growth of 2D MoO2/MoS2 vertical heterostructures for superior hydrogen evolution in alkaline electrolytes. Small 2022; 18: 2201051. [Article] [CrossRef] [Google Scholar]
- Wu Q, Jeong T, Kim SH, et al. Synthesis of large area graphitic carbon nitride nanosheet by chemical vapor deposition. J Alloys Compd 2022; 900: 163310. [Article] [CrossRef] [Google Scholar]
- Cai Z, Lai Y, Zhao S, et al. Dissolution-precipitation growth of uniform and clean two dimensional transition metal dichalcogenides. Natl Sci Rev 2021; 8: nwaa115. [Article] [Google Scholar]
- Tang L, Li T, Luo Y, et al. Vertical chemical vapor deposition growth of highly uniform 2D transition metal dichalcogenides. ACS Nano 2020; 14: 4646-4653. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lei J, Xie Y, Kutana A, et al. Salt-assisted MoS2 growth: Molecular mechanisms from the first principles. J Am Chem Soc 2022; 144: 7497-7503. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang Z, Chen P, Yang X, et al. Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl Sci Rev 2020; 7: 737-744. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhao C, Meng C, Wang B, et al. Vapor-liquid-solid growth of thin and epitaxial transition metal nitride nanosheets for catalysis and energy conversion. ACS Appl Nano Mater 2021; 4: 10735-10742. [Article] [Google Scholar]
- Ji Q, Su C, Mao N, et al. Revealing the Brønsted-Evans-Polanyi relation in halide-activated fast MoS2 growth toward millimeter-sized 2D crystals. Sci Adv 2021; 7: eabj3274. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Qiu H, Xu T, Wang Z, et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat Commun 2013; 4: 2642. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jeong HY, Jin Y, Yun SJ, et al. Heterogeneous defect domains in single-crystalline hexagonal WS2. Adv Mater 2017; 29: 1605043. [Article] [CrossRef] [Google Scholar]
- Ding Q, Czech KJ, Zhao Y, et al. Basal-plane ligand functionalization on semiconducting 2H-MoS2 monolayers. ACS Appl Mater Interfaces 2017; 9: 12734-12742. [Article] [Google Scholar]
- Ippolito S, Kelly AG, Furlan de Oliveira R, et al. Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices. Nat Nanotechnol 2021; 16: 592-598. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- van der Zande AM, Huang PY, Chenet DA, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater 2013; 12: 554-561. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Feng S, Tan J, Zhao S, et al. Synthesis of ultrahigh-quality monolayer molybdenum disulfide through in situ defect healing with thiol molecules. Small 2020; 16: 2003357. [Article] [CrossRef] [Google Scholar]
- Zuo Y, Liu C, Ding L, et al. Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply. Nat Commun 2022; 13: 1007. [Article] [Google Scholar]
- Ammon W. Defects in monocrystalline silicon. In: Kasap S, Capper P (eds). Springer Handbook of Electronic and Photonic Materials. Cham: Springer, 2007. 101 [Google Scholar]
- Liu M, Feng S, Hou Y, et al. High yield growth and doping of black phosphorus with tunable electronic properties. Mater Today 2020; 36: 91-101. [Article] [Google Scholar]
- Prabukanthan P, Dhanasekaran R. Growth of CuInTe2 single crystals by iodine transport and their characterization. Mater Res Bull 2008; 43: 1996-2004. [Article] [Google Scholar]
- Hu D, Xu G, Xing L, et al. Two-dimensional semiconductors grown by chemical vapor transport. Angew Chem Int Ed 2017; 56: 3611-3615. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yang P, Zou X, Zhang Z, et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat Commun 2018; 9: 979. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Song JG, Hee Ryu G, Kim Y, et al. Catalytic chemical vapor deposition of large-area uniform two-dimensional molybdenum disulfide using sodium chloride. Nanotechnology 2017; 28: 465103. [Article] [Google Scholar]
- Chen J, Tang W, Tian B, et al. Chemical vapor deposition of high-quality large-sized MoS2 crystals on silicon dioxide substrates. Adv Sci 2016; 3: 1500033. [Article] [CrossRef] [Google Scholar]
- Chang MC, Ho PH, Tseng MF, et al. Fast growth of large-grain and continuous MoS2 films through a self-capping vapor-liquid-solid method. Nat Commun 2020; 11: 3682. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang Q, Li N, Tang J, et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett 2020; 20: 7193-7199. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chen W, Zhao J, Zhang J, et al. Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J Am Chem Soc 2015; 137: 15632-15635. [Article] [CrossRef] [PubMed] [Google Scholar]
- Najmaei S, Liu Z, Zhou W, et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater 2013; 12: 754-759. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lim YF, Priyadarshi K, Bussolotti F, et al. Modification of vapor phase concentrations in MoS2 growth using a NiO foam barrier. ACS Nano 2018; 12: 1339-1349. [Article] [Google Scholar]
- Yang J, Wang Y, Lagos MJ, et al. Single atomic vacancy catalysis. ACS Nano 2019; 13: 9958-9964. [Article] [Google Scholar]
- Yu Z, Pan Y, Shen Y, et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat Commun 2014; 5: 5290. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhou W, Zou X, Najmaei S, et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett 2013; 13: 2615-2622. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li D, Xiao Z, Golgir HR, et al. Large-area 2D/3D MoS2-MoO2 heterostructures with thermally stable exciton and intriguing electrical transport behaviors. Adv Electron Mater 2017; 3: 1600335. [Article] [Google Scholar]
- Wang Q, Tang J, Li X, et al. Layer-by-layer epitaxy of multi-layer MoS2 wafers. Natl Sci Rev 2022; 9: nwac077. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Li T, Guo W, Ma L, et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat Nanotechnol 2021; 16: 1201-1207. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang X, Liao Q, Kang Z, et al. Hidden vacancy benefit in monolayer 2D semiconductors. Adv Mater 2021; 33: 2007051. [Article] [Google Scholar]
- Yang P, Wang D, Zhao X, et al. Epitaxial growth of inch-scale single-crystal transition metal dichalcogenides through the patching of unidirectionally orientated ribbons. Nat Commun 2022; 13: 3238. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Luo Y, Tang L, Khan U, et al. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat Commun 2019; 10: 269. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Luo Y, Zhang S, Pan H, et al. Unsaturated single atoms on monolayer transition metal dichalcogenides for ultrafast hydrogen evolution. ACS Nano 2020; 14: 767-776. [Article] [Google Scholar]
- Xu H, Ding B, Xu Y, et al. Magnetically tunable and stable deep-ultraviolet birefringent optics using two-dimensional hexagonal boron nitride. Nat Nanotechnol 2022; 17: 1091-1096. [Article] [Google Scholar]
- Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996; 6: 15-50. [Article] [Google Scholar]
- Blöchl PE. Projector augmented-wave method. Phys Rev B 1994; 50: 17953-17979. [Article] [CrossRef] [PubMed] [Google Scholar]
- Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996; 77: 3865-3868. [Article] [Google Scholar]
- Artyukhov VI, Liu Y, Yakobson BI. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc Natl Acad Sci USA 2012; 109: 15136-15140. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.