Issue |
Natl Sci Open
Volume 2, Number 5, 2023
Special Topic: Gene Editing towards Translation
|
|
---|---|---|
Article Number | 20220066 | |
Number of page(s) | 21 | |
Section | Life Sciences and Medicine | |
DOI | https://doi.org/10.1360/nso/20220066 | |
Published online | 07 July 2023 |
- Godfray HCJ, Beddington JR, Crute IR, et al. Food security: The challenge of feeding 9 billion people. Science 2010; 327: 812-818. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- McMichael AJ. Insights from past millennia into climatic impacts on human health and survival. Proc Natl Acad Sci USA 2012; 109: 4730-4737. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Foley JA, Ramankutty N, Brauman KA, et al. Solutions for a cultivated planet. Nature 2011; 478: 337-342. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tilman D, Balzer C, Hill J, et al. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 2011; 108: 20260-20264. [Article] [CrossRef] [PubMed] [Google Scholar]
- World Population Prospects: The 2017 Revision, Volume II: Demographic Profiles (ST/ESA/SER.A/400). Report. United Nations, Department of Economic and Social Affairs, Population Division, 2017 [Google Scholar]
- Zhao J, Lai L, Ji W, et al. Genome editing in large animals: Current status and future prospects. Natl Sci Rev 2019; 6: 402-420. [Article] [CrossRef] [PubMed] [Google Scholar]
- Perisse IV, Fan Z, Singina GN, et al. Improvements in gene editing technology boost its applications in livestock. Front Genet 2020; 11: 614688. [Article] [Google Scholar]
- Proudfoot C, Mcfarlane G, Whitelaw B, et al. Livestock breeding for the 21st century: The promise of the editing revolution. Front Agr Sci Eng 2020; 7: 129-135. [Article] [CrossRef] [Google Scholar]
- Mosher DS, Quignon P, Bustamante CD, et al. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet 2007, 3: e79 [CrossRef] [PubMed] [Google Scholar]
- Boman IA, Klemetsdal G, Blichfeldt T, et al. A frameshift mutation in the coding region of the myostatin gene (MSTN) affects carcass conformation and fatness in Norwegian White Sheep (Ovis aries). Anim Genet 2009; 40: 418-422. [Article] [CrossRef] [PubMed] [Google Scholar]
- Grobet L, Royo Martin LJ, Poncelet D, et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 1997; 17: 71-74. [Article] [CrossRef] [PubMed] [Google Scholar]
- Collins E. FDA approves antithrombin ATryn from genetically altered animals. Wash Drug Lett 2009; 41: 10 [Google Scholar]
- Sheridan C. FDA approves “farmaceutical” drug from transgenic chickens. Nat Biotechnol 2016; 34: 117-119. [Article] [CrossRef] [PubMed] [Google Scholar]
- U.S. Food and Drug Administration. FDA approves genetically modified salmon for human consumption. 2015. https://www.labmanager.com/fda-approves-genetically-modified-salmon-for-human-consumption-10978 [Google Scholar]
- Bibikova M, Carroll D, Segal DJ, et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 2001; 21: 289-297. [Article] [Google Scholar]
- Deng D, Yan C, Pan X, et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 2012; 335: 720-723. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337: 816-821. [Article] [CrossRef] [PubMed] [Google Scholar]
- Qian L, Tang M, Yang J, et al. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep 2015; 5: 14435. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Carlson DF, Lancto CA, Zang B, et al. Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol 2016; 34: 479-481. [Article] [CrossRef] [PubMed] [Google Scholar]
- Koslová A, Trefil P, Mucksová J, et al. Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus. Proc Natl Acad Sci USA 2020; 117: 2108-2112. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jabbar A, Zulfiqar F, Mahnoor M, et al. Advances and perspectives in the application of CRISPR-Cas9 in livestock. Mol Biotechnol 2021; 63: 757-767. [Article] [Google Scholar]
- Telugu BP, Park KE, Park CH. Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications. Mamm Genome 2017; 28: 338-347. [Article] [Google Scholar]
- Tu CF, Chuang C, Yang TS. The application of new breeding technology based on gene editing in pig industry — A review. Anim Biosci 2022; 35: 791-803. [Article] [CrossRef] [PubMed] [Google Scholar]
- Khwatenge CN, Nahashon SN. Recent advances in the application of CRISPR/Cas9 gene editing system in poultry species. Front Genet 2021; 12: 627714. [Article] [CrossRef] [PubMed] [Google Scholar]
- van de Lavoir MC, Diamond JH, Leighton PA, et al. Germline transmission of genetically modified primordial germ cells. Nature 2006; 441: 766-769. [Article] [CrossRef] [PubMed] [Google Scholar]
- Schusser B, Collarini EJ, Yi H, et al. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proc Natl Acad Sci USA 2013; 110: 20170-20175. [Article] [CrossRef] [PubMed] [Google Scholar]
- Oishi I, Yoshii K, Miyahara D, et al. Targeted mutagenesis in chicken using CRISPR/Cas9 system. Sci Rep 2016; 6: 23980. [Article] [CrossRef] [PubMed] [Google Scholar]
- Taylor L, Carlson DF, Nandi S, et al. Efficient TALEN-mediated gene targeting of chicken primordial germ cells. Development 2017; 144: 928-934. [Article] [PubMed] [Google Scholar]
- Lee J, Ma J, Lee K. Direct delivery of adenoviral CRISPR/Cas9 vector into the blastoderm for generation of targeted gene knockout in quail. Proc Natl Acad Sci USA 2019; 116: 13288-13292. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Tyack SG, Jenkins KA, O’Neil TE, et al. A new method for producing transgenic birds via direct in vivo transfection of primordial germ cells. Transgenic Res 2013; 22: 1257-1264. [Article] [Google Scholar]
- Challagulla A, Jenkins KA, O’Neil TE, et al. Germline engineering of the chicken genome using CRISPR/Cas9 by in vivo transfection of PGCs. Anim Biotechnol 2023; 34: 775-784. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cooper CA, Challagulla A, Jenkins KA, et al. Generation of gene edited birds in one generation using sperm transfection assisted gene editing (STAGE). Transgenic Res 2017; 26: 331-347. [Article] [Google Scholar]
- Song R, Wang Y, Wang Y, et al. Base editing in pigs for precision breeding. Front Agr Sci Eng 2020; 7: 161-170. [Article] [CrossRef] [Google Scholar]
- Aiello D, Patel K, Lasagna E. The myostatin gene: An overview of mechanisms of action and its relevance to livestock animals. Anim Genet 2018; 49: 505-519. [Article] [CrossRef] [PubMed] [Google Scholar]
- McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. Nature 1997; 387: 83-90. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang K, Ouyang H, Xie Z, et al. Efficient generation of Myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep 2015; 5: 16623. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Bi Y, Hua Z, Liu X, et al. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Sci Rep 2016; 6: 31729. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zou Y, Li Z, Zou Y, et al. Generation of pigs with a Belgian Blue mutation in MSTN using CRISPR/Cpf1-assisted ssODN-mediated homologous recombination. J Integrative Agr 2019; 18: 1329-1336. [Article] [Google Scholar]
- Fan Z, Liu Z, Xu K, et al. Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production. Sci China Life Sci 2022; 65: 362-375. [Article] [CrossRef] [PubMed] [Google Scholar]
- Matika O, Robledo D, Pong-Wong R, et al. Balancing selection at a premature stop mutation in the myostatin gene underlies a recessive leg weakness syndrome in pigs. PLoS Genet 2019; 15, doi: 10.1371/journal.pgen.1007759 [Google Scholar]
- Wang X, Petersen B. More abundant and healthier meat: Will the MSTN editing epitome empower the commercialization of gene editing in livestock?. Sci China Life Sci 2022; 65: 448-450. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Wang K, Tang X, Xie Z, et al. CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs. Transgenic Res 2017; 26: 799-805. [Article] [Google Scholar]
- Han H, Ma Y, Wang T, et al. One-step generation of myostatin gene knockout sheep via the CRISPR/Cas9 system. Front Agr Sci Eng 2014; 1: 2-5. [Article] [CrossRef] [Google Scholar]
- Guo R, Wan Y, Xu D, et al. Generation and evaluation of Myostatin knock-out rabbits and goats using CRISPR/Cas9 system. Sci Rep 2016; 6: 29855. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ni W, Qiao J, Hu SW, et al. Efficient gene knock-out in goats using CRISPR/Cas9 system. PLoS One 2014; 9: e106718 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Luo J, Song Z, Yu S, et al. Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases. PLoS One 2014; 9: e95225 [Google Scholar]
- Kim GD, Lee JH, Song S, et al. Generation of myostatin-knockout chickens mediated by D10A-Cas9 nickase. FASEB Journal 2020; 34: 5688-5696. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lee J, Kim DH, Lee K. Muscle hyperplasia in Japanese quail by single amino acid deletion in MSTN propeptide. Int J Mol Sci 2020; 21: 1504. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lee J, Kim DH, Brower AM, et al. Research note: Improved feed efficiency in quail with targeted genome editing in the myostatin gene. Poultry Sci 2021; 100: 101257. [Article] [CrossRef] [Google Scholar]
- Park TS, Park J, Lee JH, et al. Disruption of G0/G1 switch gene 2 (G0S2) reduced abdominal fat deposition and altered fatty acid composition in chicken. FASEB J 2019; 33: 1188-1198. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jeon JT, Carlborg Ö, Törnsten A, et al. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat Genet 1999; 21: 157-158. [Article] [CrossRef] [PubMed] [Google Scholar]
- Van Laere AS, Nguyen M, Braunschweig M, et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 2003; 425: 832-836. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Younis S, Schönke M, Massart J, et al. The ZBED6–IGF2 axis has a major effect on growth of skeletal muscle and internal organs in placental mammals. Proc Natl Acad Sci USA 2018; 115: E2048-E2057. [Article] [NASA ADS] [Google Scholar]
- Xiang G, Ren J, Hai T, et al. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs. Cell Mol Life Sci 2018; 75: 4619-4628. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu X, Liu H, Wang M, et al. Disruption of the ZBED6 binding site in intron 3 of IGF2 by CRISPR/Cas9 leads to enhanced muscle development in Liang Guang Small Spotted pigs. Transgenic Res 2019; 28: 141-150. [Article] [Google Scholar]
- Ye J, Zhang Y, Xu J, et al. FBXO40, a gene encoding a novel muscle-specific F-box protein, is upregulated in denervation-related muscle atrophy. Gene 2007; 404: 53-60. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shi J, Luo L, Eash J, et al. The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling. Dev Cell 2011; 21: 835-847. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zou Y, Li Z, Zou Y, et al. An FBXO40 knockout generated by CRISPR/Cas9 causes muscle hypertrophy in pigs without detectable pathological effects. Biochem Biophys Res Commun 2018; 498: 940-945. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wensvoort G, Terpstra C, Pol JMA, et al. Mystery swine disease in the Netherlands: The isolation of Lelystad virus. Vet Q 1991; 13: 121-130. [Article] [Google Scholar]
- Neumann EJ, Kliebenstein JB, Johnson CD, et al. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. javma 2005; 227: 385-392. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tian K, Yu X, Zhao T, et al. Emergence of fatal PRRSV variants: Unparalleled outbreaks of atypical prrs in China and molecular dissection of the unique hallmark. PLoS One 2007; 2: e526 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Boddicker NJ, Bjorkquist A, Rowland RR, et al. Genome-wide association and genomic prediction for host response to porcine reproductive and respiratory syndrome virus infection. Genet Sel Evol 2014; 46: 18. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shi C, Liu Y, Ding Y, et al. PRRSV receptors and their roles in virus infection. Arch Microbiol 2015; 197: 503-512. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Calvert JG, Slade DE, Shields SL, et al. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses. J Virol 2007; 81: 7371-7379. [Article] [Google Scholar]
- Van Gorp H, Van Breedam W, Van Doorsselaere J, et al. Identification of the CD163 protein domains involved in infection of the porcine reproductive and respiratory syndrome virus. J Virol 2010; 84: 3101-3105. [Article] [Google Scholar]
- Whitworth KM, Lee K, Benne JA, et al. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos1. Biol Reprod 2014; 91: 78. [Article] [CrossRef] [PubMed] [Google Scholar]
- Whitworth KM, Rowland RRR, Ewen CL, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol 2016; 34: 20-22. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yang H, Zhang J, Zhang X, et al. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus. Antiviral Res 2018; 151: 63-70. [Article] [CrossRef] [PubMed] [Google Scholar]
- Burkard C, Lillico SG, Reid E, et al. Precision engineering for prrsv resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog 2017; 13: e1006206 [CrossRef] [PubMed] [Google Scholar]
- Wang H, Shen L, Chen J, et al. Deletion of CD163 Exon 7 confers resistance to highly pathogenic porcine reproductive and respiratory viruses on pigs. Int J Biol Sci 2019; 15: 1993-2005. [Article] [Google Scholar]
- Burkard C, Opriessnig T, Mileham AJ, et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection. J Virol 2018; 92: JVI.00415-18 [Google Scholar]
- Wells KD, Bardot R, Whitworth KM, et al. Replacement of porcine CD163 scavenger receptor cysteine-rich domain 5 with a CD163-like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus. J Virol 2017, 91, doi: 10.1128/JVI.01521-16 [CrossRef] [PubMed] [Google Scholar]
- Chen J, Wang H, Bai J, et al. Generation of pigs resistant to highly pathogenic-porcine reproductive and respiratory syndrome virus through gene editing of CD163. Int J Biol Sci 2019; 15: 481-492. [Article] [CrossRef] [PubMed] [Google Scholar]
- Fine P, Eames K, Heymann DL. “Herd immunity”: A rough guide. Clin Infect Dis 2011; 52: 911-916. [Article] [CrossRef] [PubMed] [Google Scholar]
- Prather RS, Rowland RRR, Ewen C, et al. An Intact Sialoadhesin (Sn/SIGLEC1/CD169) is not required for attachment/internalization of the porcine reproductive and respiratory syndrome virus. J Virol 2013; 87: 9538-9546. [Article] [Google Scholar]
- Petersen GEL, Buntjer JB, Hely FS, et al. Modeling suggests gene editing combined with vaccination could eliminate a persistent disease in livestock. Proc Natl Acad Sci USA 2022; 119: e2107224119. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chen L, Lin YL, Peng G, et al. Structural basis for multifunctional roles of mammalian aminopeptidase N. Proc Natl Acad Sci USA 2012; 109: 17966-17971. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li W, Luo R, He Q, et al. Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry. Virus Res 2017; 235: 6-13. [Article] [Google Scholar]
- Luo L, Wang S, Zhu L, et al. Aminopeptidase N-null neonatal piglets are protected from transmissible gastroenteritis virus but not porcine epidemic diarrhea virus. Sci Rep 2019; 9: 13186. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang J, Wu Z, Yang H. Aminopeptidase N knockout pigs are not resistant to porcine epidemic diarrhea virus infection. Virol Sin 2019; 34: 592-595. [Article] [Google Scholar]
- Whitworth KM, Rowland RRR, Petrovan V, et al. Resistance to coronavirus infection in amino peptidase N-deficient pigs. Transgenic Res 2019; 28: 21-32. [Article] [Google Scholar]
- Stoian A, Rowland RRR, Petrovan V, et al. The use of cells from ANPEP knockout pigs to evaluate the role of aminopeptidase N (APN) as a receptor for porcine deltacoronavirus (PDCoV). Virology 2020; 541: 136-140. [Article] [Google Scholar]
- Hayakawa T, Aki I, Varki A, et al. Fixation of the human-specific CMP-N-acetylneuraminic acid hydroxylase pseudogene and implications of haplotype diversity for human evolution. Genetics 2006; 172: 1139-1146. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tu CF, Chuang CK, Hsiao KH, et al. Lessening of porcine epidemic diarrhoea virus susceptibility in piglets after editing of the cmp-n-glycolylneuraminic acid hydroxylase gene with CRISPR/Cas9 to nullify n-glycolylneuraminic acid expression. PLoS One 2019; 14: e0217236 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang X, Li Y, Li LF, et al. RNA interference screening of interferon-stimulated genes with antiviral activities against classical swine fever virus using a reporter virus. Antiviral Res 2016; 128: 49-56. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xie Z, Pang D, Yuan H, et al. Genetically modified pigs are protected from classical swine fever virus. PLoS Pathog 2018; 14: e1007193 [CrossRef] [PubMed] [Google Scholar]
- Lu C, Pang D, Li M, et al. CRISPR/Cas9-mediated hitchhike expression of functional shRNAs at the porcine miR-17-92 cluster. Cells 2019; 8: 113. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xie Z, Jiao H, Xiao H, et al. Generation of pRSAD2 gene knock-in pig via CRISPR/Cas9 technology. Antiviral Res 2020; 174: 104696. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hu S, Qiao J, Fu Q, et al. Transgenic shRNA pigs reduce susceptibility to foot and mouth disease virus infection. eLife 2015; 4: e06951. [Article] [CrossRef] [PubMed] [Google Scholar]
- Deng S, Li G, Yu K, et al. RNAi combining Sleeping Beauty transposon system inhibits ex vivo expression of foot-and-mouth disease virus VP1 in transgenic sheep cells. Sci Rep 2017; 7: 10065. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang H, Liu X, Wu J, et al. Bovine fetal epithelium cells expressing shRNA targeting viral VP1 gene resisted against foot-and-mouth disease virus. Virology 2013; 439: 115-121. [Article] [Google Scholar]
- Wu H, Wang Y, Zhang Y, et al. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc Natl Acad Sci USA 2015; 112: E1530-E1539. [Article] [NASA ADS] [Google Scholar]
- Gao Y, Wu H, Wang Y, et al. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol 2017; 18: 13. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shanthalingam S, Tibary A, Beever JE, et al. Precise gene editing paves the way for derivation of Mannheimia haemolytica leukotoxin-resistant cattle. Proc Natl Acad Sci USA 2016; 113: 13186-13190. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Prusiner SB. Prions. Proc Natl Acad Sci USA 1998; 95: 13363-13383. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Aguzzi A, Baumann F, Bremer J. The Prion’s elusive reason for Being. Annu Rev Neurosci 2008; 31: 439-477. [Article] [CrossRef] [PubMed] [Google Scholar]
- Büeler H, Aguzzi A, Sailer A, et al. Mice devoid of PrP are resistant to scrapie. Cell 1993; 73: 1339-1347. [Article] [CrossRef] [PubMed] [Google Scholar]
- Manson JC, Clarke AR, Hooper ML, et al. 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 1994; 8: 121-127. [Article] [Google Scholar]
- Benestad SL, Austbø L, Tranulis MA, et al. Healthy goats naturally devoid of prion protein. Vet Res 2012; 43: 87. [Article] [Google Scholar]
- Richt JA, Kasinathan P, Hamir AN, et al. Production of cattle lacking prion protein. Nat Biotechnol 2007; 25: 132-138. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bevacqua RJ, Fernandez-Martín R, Savy V, et al. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system. Theriogenology 2016; 86: 1886-1896.e1. [Article] [CrossRef] [PubMed] [Google Scholar]
- Park YH, Chungu K, Lee SB, et al. Host-specific restriction of avian influenza virus caused by differential dynamics of ANP32 family members. J Infect Dis 2020; 221: 71-80. [Article] [Google Scholar]
- June Byun S, Yuk S, Jang YJ, et al. Transgenic chickens expressing the 3D8 single chain variable fragment protein suppress avian influenza transmission. Sci Rep 2017; 7: 5938. [Article] [CrossRef] [PubMed] [Google Scholar]
- Koslová A, Trefil P, Mucksová J, et al. Knock-out of retrovirus receptor gene Tva in the chicken confers resistance to avian leukosis virus subgroups A and K and affects cobalamin (vitamin B12)-dependent level of methylmalonic acid. Viruses 2021; 13: 2504. [Article] [Google Scholar]
- Hellmich R, Sid H, Lengyel K, et al. Acquiring resistance against a retroviral infection via CRISPR/Cas9 targeted genome editing in a commercial chicken line. Front Genome Ed 2020; 2: 3. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen PR, Rowland RRR, Stoian AM, et al. Disruption of anthrax toxin receptor 1 in pigs leads to a rare disease phenotype and protection from senecavirus A infection. Sci Rep 2022; 12: 5009. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hansen PJ. Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle. Theriogenology 2020; 154: 190-202. [Article] [CrossRef] [PubMed] [Google Scholar]
- Deng S, Li G, Zhang J, et al. Transgenic cloned sheep overexpressing ovine toll-like receptor 4. Theriogenology 2013; 80: 50-57. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xu K, Zhou Y, Mu Y, et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance. eLife 2020; 9: e57132. [Article] [CrossRef] [PubMed] [Google Scholar]
- Song R, Wang Y, Zheng Q, et al. One-step base editing in multiple genes by direct embryo injection for pig trait improvement. Sci China Life Sci 2022; 65: 739-752. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang X, Yu H, Lei A, et al. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep 2015; 5: 13878. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang X, Niu Y, Zhou J, et al. Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep. Sci Rep 2016; 6: 32271. [Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Feng T, Li Z, Qi X, et al. Measuring targeting specificity of genome-editing by nuclear transfer and sequencing (NT-seq). Cell Discov 2020; 6: 78. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu X, Wang Y, Guo W, et al. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat Commun 2013; 4: 2565. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ma T, Tao J, Yang M, et al. An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep. J Pineal Res 2017; 63: e12406. [Article] [Google Scholar]
- Ehn BM, Ekstrand B, Bengtsson U, et al. Modification of IgE binding during heat processing of the cow’s milk allergen β-lactoglobulin. J Agric Food Chem 2004; 52: 1398-1403. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ehn BM, Allmere T, Telemo E, et al. Modification of IgE binding to β-lactoglobulin by fermentation and proteolysis of cow’s milk. J Agric Food Chem 2005; 53: 3743-3748. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhou WJ, Wan YJ, Guo RH, et al. Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9. PLoS One 2017; 12: e0186056 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sun Z, Wang M, Han S, et al. Production of hypoallergenic milk from DNA-free beta-lactoglobulin (BLG) gene knockout cow using zinc-finger nucleases mRNA. Sci Rep 2018; 8: 15430. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhu L, van de Lavoir MC, Albanese J, et al. Production of human monoclonal antibody in eggs of chimeric chickens. Nat Biotechnol 2005; 23: 1159-1169. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lillico SG, Sherman A, McGrew MJ, et al. Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proc Natl Acad Sci USA 2007; 104: 1771-1776. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Park TS, Lee HG, Moon JK, et al. Deposition of bioactive human epidermal growth factor in the egg white of transgenic hens using an oviduct-specific minisynthetic promoter. FASEB J 2015; 29: 2386-2396. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kwon MS, Koo BC, Kim D, et al. Generation of transgenic chickens expressing the human erythropoietin (hEPO) gene in an oviduct-specific manner: Production of transgenic chicken eggs containing human erythropoietin in egg whites. PLoS One 2018; 13: e0194721 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Herron LR, Pridans C, Turnbull ML, et al. A chicken bioreactor for efficient production of functional cytokines. BMC Biotechnol 2018; 18: 82. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kim YM, Park JS, Kim SK, et al. The transgenic chicken derived anti-CD20 monoclonal antibodies exhibits greater anti-cancer therapeutic potential with enhanced Fc effector functions. Biomaterials 2018; 167: 58-68. [Article] [CrossRef] [PubMed] [Google Scholar]
- Oishi I, Yoshii K, Miyahara D, et al. Efficient production of human interferon beta in the white of eggs from ovalbumin gene–targeted hens. Sci Rep 2018; 8: 10203. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mukae T, Yoshii K, Watanobe T, et al. Production and characterization of eggs from hens with ovomucoid gene mutation. Poultry Sci 2021; 100: 452-460. [Article] [CrossRef] [Google Scholar]
- Young AE, Mansour TA, McNabb BR, et al. Genomic and phenotypic analyses of six offspring of a genome-edited hornless bull. Nat Biotechnol 2020; 38: 225-232. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kopecky J, Clarke G, Enerbäck S, et al. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest 1995; 96: 2914-2923. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zheng Q, Lin J, Huang J, et al. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc Natl Acad Sci USA 2017; 114: E9474-E9482. [Article] [NASA ADS] [Google Scholar]
- Zhang X, Li Z, Yang H, et al. Novel transgenic pigs with enhanced growth and reduced environmental impact. eLife 2018; 7: e34286. [Article] [CrossRef] [PubMed] [Google Scholar]
- Vàzquez-Salat N, Salter B, Smets G, et al. The current state of GMO governance: Are we ready for GM animals?. Biotechnol Adv 2012; 30: 1336-1343. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wunderlich S, Gatto KA. Consumer perception of genetically modified organisms and sources of information. Adv Nutr 2015; 6: 842-851. [Article] [CrossRef] [PubMed] [Google Scholar]
- Fan Z, Wu T, Wu K, et al. Reflections on the system of evaluation of gene-edited livestock. Front Agr Sci Eng 2020; 7: 211-217. [Article] [CrossRef] [Google Scholar]
- Hackett PB. Regulatory issues for genetically modified animals. Front Agr Sci Eng 2020; 7: 188-203. [Article] [CrossRef] [Google Scholar]
- Lee HJ, Yoon JW, Jung KM, et al. Targeted gene insertion into Z chromosome of chicken primordial germ cells for avian sexing model development. FASEB J 2019; 33: 8519-8529. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mueller ML, Cole JB, Connors NK, et al. Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the tropically adapted australian beef cattle population. Front Genet 2021; 12: 593154. [Article] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.