Issue |
Natl Sci Open
Volume 2, Number 5, 2023
Special Topic: Gene Editing towards Translation
|
|
---|---|---|
Article Number | 20220067 | |
Number of page(s) | 32 | |
Section | Life Sciences and Medicine | |
DOI | https://doi.org/10.1360/nso/20220067 | |
Published online | 18 July 2023 |
- Smithies O, Gregg RG, Boggs SS, et al. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature 1985; 317: 230-234. [Article] [CrossRef] [PubMed] [Google Scholar]
- Scherer S, Davis RW. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci USA 1979; 76: 4951-4955. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Capecchi MR. The new mouse genetics: Altering the genome by gene targeting. Trends Genet 1989; 5: 70-76. [Article] [CrossRef] [PubMed] [Google Scholar]
- Orr-Weaver TL, Szostak JW. Yeast recombination: the association between double-strand gap repair and crossing-over. Proc Natl Acad Sci USA 1983; 80: 4417-4421. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol, 1994; 14: 8096–8106 [Google Scholar]
- Rudin N, Sugarman E, Haber JE. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 1989; 122: 519-534. [Article] [CrossRef] [PubMed] [Google Scholar]
- Belfort M. Homing endonucleases: keeping the house in order. Nucleic Acids Res 1997; 25: 3379-3388. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jacquier A, Dujon B. An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 1985; 41: 383-394. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jasin M. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet 1996; 12: 224-228. [Article] [CrossRef] [PubMed] [Google Scholar]
- Stoddard BL. Homing endonuclease structure and function. Q Rev Biophys, 2005; 38: 49–95 [Google Scholar]
- Roberts RJ. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 2003; 31: 1805-1812. [Article] [CrossRef] [PubMed] [Google Scholar]
- Moure CM, Gimble FS, Quiocho FA. The crystal structure of the gene targeting homing endonuclease I-SceI reveals the origins of its target site specificity. J Mol Biol 2003; 334: 685-695. [Article] [Google Scholar]
- Chevalier BS. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 2001; 29: 3757-3774. [Article] [CrossRef] [PubMed] [Google Scholar]
- Smith J, Grizot S, Arnould S, et al. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 2006; 34: e149. [Article] [CrossRef] [PubMed] [Google Scholar]
- Arnould S, Perez C, Cabaniols JP, et al. Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol 2007; 371: 49-65. [Article] [Google Scholar]
- Gao H, Smith J, Yang M, et al. Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J 2010; 61: 176-187. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ménoret S, Fontanière S, Jantz D, et al. Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases. FASEB J 2013; 27: 703-711. [Article] [CrossRef] [PubMed] [Google Scholar]
- Berg JM. Zinc finger domains: hypotheses and current knowledge. Annu Rev Biophys Biophys Chem 1990; 19: 405-421. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pabo CO, Peisach E, Grant RA. Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 2001; 70: 313-340. [Article] [CrossRef] [PubMed] [Google Scholar]
- Elrod-Erickson M, Rould MA, Nekludova L, et al. Zif268 protein-DNA complex refined at 1.6Å: a model system for understanding zinc finger-DNA interactions. Structure 1996; 4: 1171-1180. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wolfe SA, Grant RA, Elrod-Erickson M, et al. Beyond the “Recognition Code”. Structure 2001; 9: 717-723. [Article] [CrossRef] [PubMed] [Google Scholar]
- Segal DJ, Crotty JW, Bhakta MS, et al. Structure of aart, a designed six-finger zinc finger peptide, bound to DNA. J Mol Biol 2006; 363: 405-421. [Article] [Google Scholar]
- Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 1996; 93: 1156-1160. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Bibikova M, Carroll D, Segal DJ, et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 2001; 21: 289-297. [Article] [Google Scholar]
- Bitinaite J, Wah DA, Aggarwal AK, et al. Fok I dimerization is required for DNA cleavage. Proc Natl Acad Sci USA 1998; 95: 10570-10575. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu Q, Segal DJ, Ghiara JB, et al. Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci USA 1997; 94: 5525-5530. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Bibikova M, Golic M, Golic KG, et al. Targeted chromosomal cleavage and mutagenesis in drosophila using zinc-finger nucleases. Genetics 2002; 161: 1169-1175. [Article] [CrossRef] [PubMed] [Google Scholar]
- Doyon Y, McCammon JM, Miller JC, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 2008; 26: 702-708. [Article] [CrossRef] [PubMed] [Google Scholar]
- Meng X, Noyes MB, Zhu LJ, et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 2008; 26: 695-701. [Article] [CrossRef] [PubMed] [Google Scholar]
- Perez-Pinera P, Ousterout DG, Brown MT, et al. Gene targeting to the ROSA26 locus directed by engineered zinc finger nucleases. Nucleic Acids Res 2012; 40: 3741-3752. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang F, Maeder ML, Unger-Wallace E, et al. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 2010; 107: 12028-12033. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Urnov FD, Miller JC, Lee YL, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005; 435: 646-651. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370: 901-910. [Article] [Google Scholar]
- Geurts AM, Cost GJ, Freyvert Y, et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science 2009; 325: 433. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liu X, Wang Y, Tian Y, et al. Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases. Proc Biol Sci, 2014; 281: 20133368 [PubMed] [Google Scholar]
- Segal DJ, Dreier B, Beerli RR, et al. Toward controlling gene expression at will: Selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci USA 1999; 96: 2758-2763. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Dreier B, Segal DJ, Barbas Iii CF. Insights into the molecular recognition of the 5′-GNN-3′ family of DNA sequences by zinc finger domains. J Mol Biol 2000; 303: 489-502. [Article] [Google Scholar]
- Dreier B, Fuller RP, Segal DJ, et al. Development of zinc finger domains for recognition of the 5′-CNN-3′ family DNA Sequences and their use in the construction of artificial transcription factors. J Biol Chem 2005; 280: 35588-35597. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dreier B, Beerli RR, Segal DJ, et al. Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem 2001; 276: 29466-29478. [Article] [CrossRef] [PubMed] [Google Scholar]
- Beerli RR, Barbas Iii CF. Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol 2002; 20: 135-141. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bae KH, Do Kwon Y, Shin HC, et al. Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat Biotechnol 2003; 21: 275-280. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mandell JG, Barbas CF. Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res 2006; 34: W516-W523. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cornu TI, Thibodeau-Beganny S, Guhl E, et al. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther 2008; 16: 352-358. [Article] [Google Scholar]
- Pruett-Miller SM, Connelly JP, Maeder ML, et al. Comparison of zinc finger nucleases for use in gene targeting in mammalian cells. Mol Ther 2008; 16: 707-717. [Article] [Google Scholar]
- Isalan M, Choo Y, Klug A. Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proc Natl Acad Sci USA 1997; 94: 5617-5621. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Maeder ML, Thibodeau-Beganny S, Osiak A, et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 2008; 31: 294-301. [Article] [Google Scholar]
- Isalan M. Zinc-finger nucleases: How to play two good hands. Nat Methods, 2011; 9: 32–34 [Google Scholar]
- Bonas U, Stall RE, Staskawicz B. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 1989; 218: 127-136. [Article] [Google Scholar]
- Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 2010; 48: 419-436. [Article] [CrossRef] [PubMed] [Google Scholar]
- Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science 2009; 326: 1501. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-Type III effectors. Science 2009; 326: 1509-1512. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Streubel J, Blücher C, Landgraf A, et al. TAL effector RVD specificities and efficiencies. Nat Biotechnol 2012; 30: 593-595. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yang J, Zhang Y, Yuan P, et al. Complete decoding of TAL effectors for DNA recognition. Cell Res 2014; 24: 628-631. [Article] [CrossRef] [PubMed] [Google Scholar]
- Deng D, Yan C, Pan X, et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 2012; 335: 720-723. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Mak ANS, Bradley P, Cernadas RA, et al. The crystal structure of TAL Effector PthXo1 bound to its DNA target. Science 2012; 335: 716-719. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Deng D, Yan C, Wu J, et al. Revisiting the TALE repeat. Protein Cell 2014; 5: 297-306. [Article] [CrossRef] [PubMed] [Google Scholar]
- Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010; 186: 757-761. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wood AJ, Lo TW, Zeitler B, et al. Targeted genome editing across species using ZFNs and TALENs. Science 2011; 333: 307. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liu J, Li C, Yu Z, et al. Efficient and specific modifications of the drosophila genome by means of an easy TALEN strategy. J Genet Genomics 2012; 39: 209-215. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sander JD, Cade L, Khayter C, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 2011; 29: 697-698. [Article] [CrossRef] [PubMed] [Google Scholar]
- Christian M, Qi Y, Zhang Y, et al. Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 Genes|Genomes|Genet 2013; 3: 1697-1705. [Article] [Google Scholar]
- Ousterout DG, Perez-Pinera P, Thakore PI, et al. Reading frame correction by targeted genome editing restores dystrophin expression in cells from duchenne muscular dystrophy patients. Mol Ther 2013; 21: 1718-1726. [Article] [Google Scholar]
- Bloom K, Ely A, Mussolino C, et al. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol Ther 2013; 21: 1889-1897. [Article] [Google Scholar]
- Cermak T, Doyle EL, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 2011; 39: e82. [Article] [CrossRef] [PubMed] [Google Scholar]
- Briggs AW, Rios X, Chari R, et al. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res 2012; 40: e117. [Article] [CrossRef] [PubMed] [Google Scholar]
- Reyon D, Tsai SQ, Khayter C, et al. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 2012; 30: 460-465. [Article] [CrossRef] [PubMed] [Google Scholar]
- Schmid-Burgk JL, Schmidt T, Kaiser V, et al. A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol 2013; 31: 76-81. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yang J, Yuan P, Wen D, et al. Ultimate system for rapid assembly of customized tal effectors. PLoS One, 2013; 8: e75649 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liang J, Chao R, Abil Z, et al. FairyTALE: A high-throughput TAL effector synthesis platform. ACS Synth Biol 2014; 3: 67-73. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kim Y, Kweon J, Kim A, et al. A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 2013; 31: 251-258. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mussolino C, Morbitzer R, Lütge F, et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 2011; 39: 9283-9293. [Article] [CrossRef] [PubMed] [Google Scholar]
- Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature 2015; 526: 55-61. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 1987; 169: 5429-5433. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jansen R, Embden JDA, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002; 43: 1565-1575. [Article] [Google Scholar]
- Mojica FJM, Díez-Villaseñor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 2005; 60: 174-182. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 2005; 151: 653-663. [Article] [Google Scholar]
- Bolotin A, Quinquis B, Sorokin A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 2005; 151: 2551-2561. [Article] [Google Scholar]
- Barrangou R, Fremaux C, Deveau H́̀, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315: 1709-1712. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sapranauskas R, Gasiunas G, Fremaux C, et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 2011; 39: 9275-9282. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337: 816-821. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012; 109: E2579-2586. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hille F, Richter H, Wong SP, et al. The biology of CRISPR-Cas: backward and forward. Cell 2018; 172: 1239-1259. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhou Y, Bravo JPK, Taylor HN, et al. Structure of a type IV CRISPR-Cas ribonucleoprotein complex. iScience 2021; 24: 102201. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sundaresan R, Parameshwaran HP, Yogesha SD, et al. RNA-independent DNA cleavage activities of Cas9 and Cas12a. Cell Rep 2017; 21: 3728-3739. [Article] [CrossRef] [PubMed] [Google Scholar]
- Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016; 353: aaf5573. [Article] [CrossRef] [PubMed] [Google Scholar]
- Koonin EV, Makarova KS. Evolutionary plasticity and functional versatility of CRISPR systems. PLoS Biol 2022; 20: e3001481. [Article] [CrossRef] [PubMed] [Google Scholar]
- Makarova KS, Zhang F, Koonin EV. SnapShot: Class 1 CRISPR-Cas systems. Cell 2017; 168: 946-946.e1. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xiao Y, Luo M, Hayes RP, et al. Structure basis for directional R-loop formation and substrate handover mechanisms in type I CRISPR-Cas system. Cell 2017; 170: 48-60.e11. [Article] [CrossRef] [PubMed] [Google Scholar]
- Rutkauskas M, Sinkunas T, Songailiene I, et al. Directional R-loop formation by the CRISPR-Cas surveillance complex cascade provides efficient off-target site rejection. Cell Rep 2015; 10: 1534-1543. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sinkunas T, Gasiunas G, Fremaux C, et al. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 2011; 30: 1335-1342. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hochstrasser ML, Taylor DW, Bhat P, et al. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Proc Natl Acad Sci USA 2014; 111: 6618-6623. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gasiunas G, Young JK, Karvelis T, et al. A catalogue of biochemically diverse CRISPR-Cas9 orthologs. Nat Commun 2020; 11: 5512. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Niewoehner O, Garcia-Doval C, Rostøl JT, et al. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature 2017; 548: 543-548. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kazlauskiene M, Kostiuk G, Venclovas Č, et al. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 2017; 357: 605-609. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Taylor HN, Laderman E, Armbrust M, et al. Positioning diverse type IV structures and functions within class 1 CRISPR-Cas systems. Front Microbiol 2021; 12: 671522. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pinilla-Redondo R, Mayo-Muñoz D, Russel J, et al. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res 2020; 48: 2000-2012. [Article] [CrossRef] [PubMed] [Google Scholar]
- Makarova KS, Zhang F, Koonin EV. SnapShot: Class 2 CRISPR-Cas systems. Cell 2017; 168: 328-328.e1. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163: 759-771. [Article] [Google Scholar]
- Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 2020; 18: 67-83. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sun A, Li CP, Chen Z, et al. The compact Casπ (Cas12l) ‘bracelet’ provides a unique structural platform for DNA manipulation. Cell Res 2023; 33: 229-244. [Article] [CrossRef] [PubMed] [Google Scholar]
- Urbaitis T, Gasiunas G, Young JK, et al. A new family of crispr-type v nucleases with c-rich pam recognition. EMBO Rep, 2022; 23: e55481 [CrossRef] [PubMed] [Google Scholar]
- Shmakov S, Abudayyeh OO, Makarova KS, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 2015; 60: 385-397. [Article] [Google Scholar]
- Liu JJ, Orlova N, Oakes BL, et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 2019; 566: 218-223. [Article] [CrossRef] [PubMed] [Google Scholar]
- Karvelis T, Bigelyte G, Young JK, et al. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res 2020; 48: 5016-5023. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yan WX, Hunnewell P, Alfonse LE, et al. Functionally diverse type V CRISPR-Cas systems. Science 2019; 363: 88-91. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pausch P, Al-Shayeb B, Bisom-Rapp E, et al. CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science 2020; 369: 333-337. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Burstein D, Harrington LB, Strutt SC, et al. New CRISPR-Cas systems from uncultivated microbes. Nature 2017; 542: 237-241. [Article] [CrossRef] [PubMed] [Google Scholar]
- Al-Shayeb B, Skopintsev P, Soczek KM, et al. Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. Cell 2022; 185: 4574-4586.e16. [Article] [CrossRef] [PubMed] [Google Scholar]
- Huang CJ, Adler BA, Doudna JA. A naturally DNase-free CRISPR-Cas12c enzyme silences gene expression. Mol Cell 2022; 82: 2148-2160.e4. [Article] [Google Scholar]
- Strecker J, Ladha A, Gardner Z, et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 2019; 365: 48-53. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Thompson MK, Sobol RW, Prakash A. Exploiting DNA endonucleases to advance mechanisms of DNA repair. Biology 2021; 10: 530. [Article] [CrossRef] [PubMed] [Google Scholar]
- Marino ND, Pinilla-Redondo R, Bondy-Denomy J. CRISPR-Cas12a targeting of ssDNA plays no detectable role in immunity. Nucleic Acids Res 2022; 50: 6414-6422. [Article] [CrossRef] [PubMed] [Google Scholar]
- Fuchs RT, Curcuru J, Mabuchi M, et al. Cas12a trans-cleavage can be modulated in vitro and is active on ssDNA, dsDNA, and RNA. bioRxiv, 2019, doi: 10.1101/600890 [Google Scholar]
- Anders C, Niewoehner O, Duerst A, et al. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 2014; 513: 569-573. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Nishimasu H, Ran FA, Hsu PD, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014; 156: 935-949. [Article] [CrossRef] [PubMed] [Google Scholar]
- Globyte V, Lee SH, Bae T, et al. CRISPR/Cas9 searches for a protospacer adjacent motif by lateral diffusion. EMBO J 2019; 38: e99466. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yang M, Sun R, Deng P, et al. Nonspecific interactions between SpCas9 and dsDNA sites located downstream of the PAM mediate facilitated diffusion to accelerate target search. Chem Sci 2021; 12: 12776-12784. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pacesa M, Loeff L, Querques I, et al. R-loop formation and conformational activation mechanisms of Cas9. Nature 2022; 609: 191-196. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen JS, Doudna JA. The chemistry of Cas9 and its CRISPR colleagues. Nat Rev Chem 2017; 1: 0078. [Article] [CrossRef] [Google Scholar]
- Zuo Z, Liu J. Cas9-catalyzed DNA cleavage generates staggered ends: evidence from molecular dynamics simulations. Sci Rep 2016; 6: 37584. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Jinek M, Jiang F, Taylor DW, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 2014; 343: 1247997. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shou J, Li J, Liu Y, et al. Precise and predictable CRISPR chromosomal rearrangements reveal principles of Cas9-mediated nucleotide insertion. Mol Cell 2018; 71: 498-509.e4. [Article] [Google Scholar]
- Wu Q, Shou J. Toward precise CRISPR DNA fragment editing and predictable 3D genome engineering. J Mol Cell Biol 2021; 12: 828-856. [Article] [Google Scholar]
- Shen MW, Arbab M, Hsu JY, et al. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 2018; 563: 646-651. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Allen F, Crepaldi L, Alsinet C, et al. Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nat Biotechnol 2019; 37: 64-72. [Article] [CrossRef] [Google Scholar]
- Yeh CD, Richardson CD, Corn JE. Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 2019; 21: 1468-1478. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yamano T, Nishimasu H, Zetsche B, et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 2016; 165: 949-962. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dong D, Ren K, Qiu X, et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 2016; 532: 522-526. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Nishimasu H, Cong L, Yan WX, et al. Crystal structure of Staphylococcus aureus Cas9. Cell 2015; 162: 1113-1126. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hirano H, Gootenberg JS, Horii T, et al. Structure and Engineering of Francisella novicida Cas9. Cell 2016; 164: 950-961. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gao P, Yang H, Rajashankar KR, et al. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res 2016; 26: 901-913. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tsuchida CA, Zhang S, Doost MS, et al. Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity. Mol Cell 2022; 82: 1199-1209.e6. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pausch P, Soczek KM, Herbst DA, et al. DNA interference states of the hypercompact crispr-casφ effector. Nat Struct Molecular Biology, 2021; 28: 652–661 [CrossRef] [PubMed] [Google Scholar]
- Jeon Y, Choi YH, Jang Y, et al. Direct observation of DNA target searching and cleavage by CRISPR-Cas12a. Nat Commun 2018; 9: 2777. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Swarts DC, van der Oost J, Jinek M. Structural basis for guide RNA processing and seed-dependent DNA Targeting by CRISPR-Cas12a. Mol Cell 2017; 66: 221-233.e4. [Article] [Google Scholar]
- Swarts DC, Jinek M. Mechanistic Insights into the cis- and trans-Acting DNase Activities of Cas12a. Mol Cell 2019; 73: 589-600.e4. [Article] [Google Scholar]
- Zhang L, Sun R, Yang M, et al. Conformational dynamics and cleavage sites of Cas12a are modulated by complementarity between crRNA and DNA. iScience 2019; 19: 492-503. [Article] [CrossRef] [PubMed] [Google Scholar]
- Stella S, Mesa P, Thomsen J, et al. Conformational activation promotes CRISPR-Cas12a catalysis and resetting of the endonuclease activity. Cell 2018; 175: 1856-1871.e21. [Article] [CrossRef] [PubMed] [Google Scholar]
- Son H, Park J, Choi YH, et al. Exploring the dynamic nature of divalent metal ions involved in DNA cleavage by CRISPR-Cas12a. Chem Commun 2022; 58: 1978-1981. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cofsky JC, Karandur D, Huang CJ, et al. CRISPR-Cas12a exploits R-loop asymmetry to form double-strand breaks. eLife 2020; 9: e55143. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang JY, Pausch P, Doudna JA. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Nat Rev Microbiol 2022; 20: 641-656. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339: 819-823. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013; 339: 823-826. [Article] [Google Scholar]
- Cho SW, Kim S, Kim JM, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 2013; 31: 230-232. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jinek M, East A, Cheng A, et al. RNA-programmed genome editing in human cells. eLife 2013; 2: e00471. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 2015; 523: 481-485. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520: 186-191. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sun H, Fu S, Cui S, et al. Development of a CRISPR-SaCas9 system for projection- and function-specific gene editing in the rat brain. Sci Adv 2020; 6: eaay6687. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hunker AC, Soden ME, Krayushkina D, et al. Conditional single vector CRISPR/SaCas9 viruses for efficient mutagenesis in the adult mouse nervous system. Cell Rep 2020; 30: 4303-4316.e6. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yan K, Feng J, Liu X, et al. Inhibition of hepatitis B virus by AAV8-Derived CRISPR/SaCas9 expressed from liver-specific promoters. Front Microbiol 2021; 12: 665184. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hu Z, Wang S, Zhang C, et al. A compact cas9 ortholog from Staphylococcus auricularis (sauricas9) expands the DNA targeting scope. PLoS Biol, 2020; 18: e3000686 [CrossRef] [PubMed] [Google Scholar]
- Hu Z, Zhang C, Wang S, et al. Discovery and engineering of small SlugCas9 with broad targeting range and high specificity and activity. Nucleic Acids Res 2021; 49: 4008-4019. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pattanayak V, Lin S, Guilinger JP, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 2013; 31: 839-843. [Article] [CrossRef] [PubMed] [Google Scholar]
- Slaymaker IM, Gao L, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity. Science 2016; 351: 84-88. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016; 529: 490-495. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chen JS, Dagdas YS, Kleinstiver BP, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 2017; 550: 407-410. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ikeda A, Fujii W, Sugiura K, et al. High-fidelity endonuclease variant HypaCas9 facilitates accurate allele-specific gene modification in mouse zygotes. Commun Biol 2019; 2: 371. [Article] [CrossRef] [PubMed] [Google Scholar]
- Nishimasu H, Shi X, Ishiguro S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 2018; 361: 1259-1262. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hu JH, Miller SM, Geurts MH, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 2018; 556: 57-63. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kim HK, Lee S, Kim Y, et al. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells. Nat Biomed Eng 2020; 4: 111-124. [Article] [Google Scholar]
- Walton RT, Christie KA, Whittaker MN, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 2020; 368: 290-296. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tan Y, Chu AHY, Bao S, et al. Rationally engineered Staphylococcus aureus Cas9 nucleases with high genome-wide specificity. Proc Natl Acad Sci USA 2019; 116: 20969-20976. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kleinstiver BP, Prew MS, Tsai SQ, et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 2015; 33: 1293-1298. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jiang W, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 2013; 31: 233-239. [Article] [CrossRef] [PubMed] [Google Scholar]
- DiCarlo JE, Norville JE, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 2013; 41: 4336-4343. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shan Q, Wang Y, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 2013; 31: 686-688. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gratz SJ, Cummings AM, Nguyen JN, et al. Genome engineering of Drosophila with the CRISPR RNA-Guided Cas9 nuclease. Genetics 2013; 194: 1029-1035. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hwang WY, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 2013; 31: 227-229. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang H, Yang H, Shivalila CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013; 153: 910-918. [Article] [CrossRef] [PubMed] [Google Scholar]
- Maddalo D, Manchado E, Concepcion CP, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 2014; 516: 423-427. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Koike-Yusa H, Li Y, Tan EP, et al. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 2014; 32: 267-273. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013; 154: 442-451. [Article] [CrossRef] [PubMed] [Google Scholar]
- Guo Y, Xu Q, Canzio D, et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 2015; 162: 900-910. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen B, Gilbert LA, Cimini BA, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 2013; 155: 1479-1491. [Article] [CrossRef] [PubMed] [Google Scholar]
- Frangoul H, Altshuler D, Cappellini MD, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med 2021; 384: 252-260. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xu L, Wang J, Liu Y, et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N Engl J Med 2019; 381: 1240-1247. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zetsche B, Heidenreich M, Mohanraju P, et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol 2017; 35: 31-34. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kim D, Kim J, Hur JK, et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 2016; 34: 863-868. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kim HK, Song M, Lee J, et al. In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods 2017; 14: 153-159. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gao L, Cox DBT, Yan WX, et al. Engineered Cpf1 variants with altered PAM specificities. Nat Biotechnol 2017; 35: 789-792. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tóth E, Varga É, Kulcsár PI, et al. Improved LbCas12a variants with altered PAM specificities further broaden the genome targeting range of Cas12a nucleases. Nucleic Acids Res, 2020; 48: 3722–3733 [CrossRef] [PubMed] [Google Scholar]
- Kleinstiver BP, Sousa AA, Walton RT, et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat Biotechnol 2019; 37: 276-282. [Article] [CrossRef] [PubMed] [Google Scholar]
- Strohkendl I, Saifuddin FA, Rybarski JR, et al. Kinetic basis for DNA target specificity of CRISPR-Cas12a. Mol Cell 2018; 71: 816-824.e3. [Article] [Google Scholar]
- Zhang L, Rube HT, Vakulskas CA, et al. Systematic in vitro profiling of off-target affinity, cleavage and efficiency for CRISPR enzymes. Nucleic Acids Res 2020; 48: 5037-5053. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang X, Wang J, Cheng Q, et al. Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov 2017; 3: 17018. [Article] [Google Scholar]
- Liu L, Chen P, Wang M, et al. C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Mol Cell 2017; 65: 310-322. [Article] [Google Scholar]
- Teng F, Cui T, Feng G, et al. Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov 2018; 4: 63. [Article] [CrossRef] [PubMed] [Google Scholar]
- Strecker J, Jones S, Koopal B, et al. Engineering of CRISPR-Cas12b for human genome editing. Nat Commun 2019; 10: 212. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ming M, Ren Q, Pan C, et al. CRISPR-Cas12b enables efficient plant genome engineering. Nat Plants 2020; 6: 202-208. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bigelyte G, Young JK, Karvelis T, et al. Miniature type V-F CRISPR-Cas nucleases enable targeted DNA modification in cells. Nat Commun 2021; 12: 6191. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wu Z, Zhang Y, Yu H, et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nat Chem Biol 2021; 17: 1132-1138. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xu X, Chemparathy A, Zeng L, et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol Cell 2021; 81: 4333-4345.e4. [Article] [Google Scholar]
- Kim DY, Lee JM, Moon SB, et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat Biotechnol 2022; 40: 94-102. [Article] [Google Scholar]
- Wang Y, Wang Y, Pan D, et al. Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease. Cell Rep 2022; 40: 111418. [Article] [CrossRef] [PubMed] [Google Scholar]
- Peters JE, Makarova KS, Shmakov S, et al. Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proc Natl Acad Sci USA, 2017; 114: E7358–E7366 [NASA ADS] [Google Scholar]
- Klompe SE, Vo PLH, Halpin-Healy TS, et al. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 2019; 571: 219-225. [Article] [CrossRef] [PubMed] [Google Scholar]
- Vo PLH, Ronda C, Klompe SE, et al. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. Nat Biotechnol 2021; 39: 480-489. [Article] [CrossRef] [PubMed] [Google Scholar]
- Querques I, Schmitz M, Oberli S, et al. Target site selection and remodelling by type V CRISPR-transposon systems. Nature 2021; 599: 497-502. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Altae-Tran H, Kannan S, Demircioglu FE, et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science 2021; 374: 57-65. [Article] [CrossRef] [PubMed] [Google Scholar]
- Karvelis T, Druteika G, Bigelyte G, et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 2021; 599: 692-696. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Schuler G, Hu C, Ke A. Structural basis for RNA-guided DNA cleavage by IscB-ωRNA and mechanistic comparison with Cas9. Science 2022; 376: 1476-1481. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533: 420-424. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017; 551: 464-471. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zong Y, Song Q, Li C, et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol 2018; 36: 950-953. [Article] [CrossRef] [Google Scholar]
- Li C, Zong Y, Wang Y, et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol 2018; 19: 59. [Article] [CrossRef] [PubMed] [Google Scholar]
- Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019; 576: 149-157. [Article] [CrossRef] [PubMed] [Google Scholar]
- Nelson JW, Randolph PB, Shen SP, et al. Engineered pegRNAs improve prime editing efficiency. Nat Biotechnol 2022; 40: 402-410. [Article] [Google Scholar]
- Liu B, Dong X, Cheng H, et al. A split prime editor with untethered reverse transcriptase and circular RNA template. Nat Biotechnol 2022; 40: 1388-1393. [Article] [Google Scholar]
- Zheng C, Liang S-Q, Liu B, et al. Development of a flexible split prime editor using truncated reverse transcriptase.bioRxiv, 2021, doi: 10.1101/2021.08.26.457801 [Google Scholar]
- Mok BY, de Moraes MH, Zeng J, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 2020; 583: 631-637. [Article] [CrossRef] [PubMed] [Google Scholar]
- Guo J, Zhang X, Chen X, et al. Precision modeling of mitochondrial diseases in zebrafish via ddcbe-mediated mtdna base editing. Cell Discov, 2021; 7: 78 [PubMed] [Google Scholar]
- Kang BC, Bae SJ, Lee S, et al. Chloroplast and mitochondrial DNA editing in plants. Nat Plants 2021; 7: 899-905. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lee H, Lee S, Baek G, et al. Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. Nat Commun 2021; 12: 1190. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Sabharwal A, Kar B, Restrepo-Castillo S, et al. The fusx tale base editor (fusxtbe) for rapid mitochondrial DNA programming of human cells in vitro and zebrafish disease models in vivo. Crispr j, 2021, 4: 799–821 [PubMed] [Google Scholar]
- Guo J, Chen X, Liu Z, et al. DdCBE mediates efficient and inheritable modifications in mouse mitochondrial genome. Mol Ther Nucleic Acids 2022; 27: 73-80. [Article] [Google Scholar]
- Wei Y, Xu C, Feng H, et al. Human cleaving embryos enable efficient mitochondrial base-editing with DdCBE. Cell Discov 2022; 8: 7. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cho SI, Lee S, Mok YG, et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell 2022; 185: 1764-1776.e12. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mok BY, Kotrys AV, Raguram A, et al. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nat Biotechnol 2022; 40: 1378-1387. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lei Z, Meng H, Liu L, et al. Mitochondrial base editor induces substantial nuclear off-target mutations. Nature 2022; 606: 804-811. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Levy JM, Yeh WH, Pendse N, et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng 2020; 4: 97-110. [Article] [Google Scholar]
- Xu L, Zhang C, Li H, et al. Efficient precise in vivo base editing in adult dystrophic mice. Nat Commun 2021; 12: 3719. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Molla KA, Sretenovic S, Bansal KC, et al. Precise plant genome editing using base editors and prime editors. Nat Plants 2021; 7: 1166-1187. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shimatani Z, Kashojiya S, Takayama M, et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 2017; 35: 441-443. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zong Y, Wang Y, Li C, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 2017; 35: 438-440. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Lin Q, Zong Y, Xue C, et al. Prime genome editing in rice and wheat. Nat Biotechnol 2020; 38: 582-585. [Article] [CrossRef] [PubMed] [Google Scholar]
- Porto EM, Komor AC, Slaymaker IM, et al. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov 2020; 19: 839-859. [Article] [CrossRef] [PubMed] [Google Scholar]
- Anzalone AV, Gao XD, Podracky CJ, et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol 2022; 40: 731-740. [Article] [Google Scholar]
- Lin Q, Jin S, Zong Y, et al. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat Biotechnol 2021; 39: 923-927. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zong Y, Liu Y, Xue C, et al. An engineered prime editor with enhanced editing efficiency in plants. Nat Biotechnol 2022; 40: 1394-1402. [Article] [Google Scholar]
- Jin S, Lin Q, Gao Q, et al. Optimized prime editing in monocot plants using PlantPegDesigner and engineered plant prime editors (ePPEs). Nat Protoc 2023; 18: 831-853. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gammage PA, Moraes CT, Minczuk M. Mitochondrial genome engineering: the revolution may not be CRISPR-Ized. Trends Genet 2018; 34: 101-110. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gammage PA, Viscomi C, Simard ML, et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat Med 2018; 24: 1691-1695. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hegge JW, Swarts DC, van der Oost J. Prokaryotic argonaute proteins: Novel genome-editing tools? Nat Rev Microbiol, 2018; 16: 5–11 [CrossRef] [PubMed] [Google Scholar]
- Gao F, Shen XZ, Jiang F, et al. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol 2016; 34: 768-773. [Article] [CrossRef] [PubMed] [Google Scholar]
- Burgess S, Cheng L, Gu F, et al. Questions about NgAgo. Protein Cell 2016; 7: 913-915. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xu S, Cao S, Zou B, et al. An alternative novel tool for DNA editing without target sequence limitation: the structure-guided nuclease. Genome Biol 2016; 17: 186. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Tian K, Guo Y, Zou B, et al. DNA and RNA editing without sequence limitation using the flap endonuclease 1 guided by hairpin DNA probes. Nucleic Acids Res 2020; 48: e117. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang J, Lisanza S, Juergens D, et al. Scaffolding protein functional sites using deep learning. Science 2022; 377: 387-394. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Dauparas J, Anishchenko I, Bennett N, et al. Robust deep learning-based protein sequence design using ProteinMPNN. Science 2022; 378: 49-56. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wicky BIM, Milles LF, Courbet A, et al. Hallucinating symmetric protein assemblies. Science 2022; 378: 56-61. [Article] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.