Issue |
Natl Sci Open
Volume 3, Number 5, 2024
Special Topic: Microwave Vision and SAR 3D Imaging
|
|
---|---|---|
Article Number | 20230067 | |
Number of page(s) | 20 | |
Section | Information Sciences | |
DOI | https://doi.org/10.1360/nso/20230067 | |
Published online | 06 March 2024 |
- Ding C, Qiu X, Xu F, et al. Synthetic aperture radar three-dimensional imaging: From tomosar and array insar to microwave vision. J Radars 2019; 8: 693–709 [Google Scholar]
- Jiao Z, Ding C, Qiu X, et al. Urban 3D imaging using airborne TomoSAR: Contextual information-based approach in the statistical way. ISPRS J Photogramm Remote Sens 2020; 170: 127-141. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang S, Guo J, Zhang Y, et al. TomoSAR 3D reconstruction for buildings using very few tracks of observation: A conditional generative adversarial network approach. Remote Sens 2021; 13: 5055. [Article] [CrossRef] [Google Scholar]
- Han D, Jiao Z, Zhou L, et al. Geometric constraints based 3D reconstruction method of tomographic SAR for buildings. Sci China Inf Sci 2023; 66: 112301. [Article] [CrossRef] [Google Scholar]
- Reigber A, Moreira A. First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans Geosci Remote Sens 2000; 38: 2142-2152. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Liang L, Guo H, Li X. Three-dimensional structural parameter inversion of buildings by distributed compressive sensing-based polarimetric SAR tomography using a small number of baselines. IEEE J Sel Top Appl Earth Observations Remote Sens 2014; 7: 4218-4230. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kumar S, Joshi SK, Govil H. Spaceborne PoLSAR tomography for forest height retrieval. IEEE J Sel Top Appl Earth Observations Remote Sens 2017; 10: 5175-5185. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhu XX, Bamler R. Very high resolution spaceborne sar tomography in urban environment. IEEE Trans Geosci Remote Sens 2010; 48: 4296-4308. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sauer S, Ferro-Famil L, Reigber A, et al. Three-dimensional imaging and scattering mechanism estimation over urban scenes using dual-baseline polarimetric InSAR observations at L-band. IEEE Trans Geosci Remote Sens 2011; 49: 4616-4629. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Huang Y, Ferro-Famil L, Reigber A. Under-foliage object imaging using SAR tomography and polarimetric spectral estimators. IEEE Trans Geosci Remote Sens 2012; 50: 2213-2225. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Peng X, Wang C, Li X, et al. Three-dimensional structure inversion of buildings with nonparametric iterative adaptive approach using SAR tomography. Remote Sens 2018; 10: 1004. [Article] [CrossRef] [Google Scholar]
- Rambour C, Denis L, Tupin F, et al. Introducing spatial regularization in SAR tomography reconstruction. IEEE Trans Geosci Remote Sens 2019; 57: 8600-8617. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Aghababaee H, Ferraioli G, Schirinzi G, et al. Regularization of SAR tomography for 3-D height reconstruction in urban areas. IEEE J Sel Top Appl Earth Observations Remote Sens 2019; 12: 648-659. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Hu Z. A note on visual semantics in SAR 3D imaging. J Radars 2022; 11: 20–26 [Google Scholar]
- Qiu X, Jiao Z, Yang Z, et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system. J Radars 2022; 11: 1–19 [Google Scholar]
- Tian Y, Ding C, Zhang F, et al. SAR building area layover detection based on deep learning. J Radars 2023; 12: 441–455 [Google Scholar]
- Jiao Z, Qiu X, Dong S, et al. Preliminary exploration of geometrical regularized SAR tomography. ISPRS J Photogramm Remote Sens 2023; 201: 174-192. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Datcu M, Huang Z, Anghel A, et al. Explainable, physics-aware, trustworthy artificial intelligence: A paradigm shift for synthetic aperture radar. IEEE Geosci Remote Sens Mag 2023; 11: 8-25. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Fu X, You H, Fu K. Building segmentation from high-resolution SAR images based on improved Markov random field. Acta Electron Sin 2012; 40: 1141–1147 [Google Scholar]
- Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 2012; 34: 2274-2282. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhou H, Wang X, Schaefer G. Mean shift and its application in image segmentation. In: Kwaśnicka H, Jain L C (eds). Innovations in Intelligent Image Analysis. Studies in Computational Intelligence. Berlin, Heidelberg: Springer, 2011, 291–312 [Google Scholar]
- Zhang F, Yang Y, Chen L, et al. Building 3D reconstruction of TomoSAR using multiple bounce scattering model. Electron Lett 2022; 58: 486-488. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sun Y, Mou L, Wang Y, et al. Large-scale building height retrieval from single SAR imagery based on bounding box regression networks. ISPRS J Photogramm Remote Sens 2022; 184: 79-95. [Article]arxiv:2111.09460 [NASA ADS] [CrossRef] [Google Scholar]
- Gao SH, Cheng MM, Zhao K, et al. Res2Net: A new multi-scale backbone architecture. IEEE Trans Pattern Anal Mach Intell 2021; 43: 652-662. [Article] [CrossRef] [PubMed] [Google Scholar]
- Fu Y, Li H, Zhang Q, et al. Block-sparse recovery via redundant block OMP. Signal Process 2014; 97: 162-171. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhao K, Bi H, Zhang B. SAR tomography method based on fast iterative shrinkage-thresholding. Systems Eng Electron 2017; 39: 1019–1023 [Google Scholar]
- Qiu X, Jiao Z, Peng L, et al. SARMV3D-1.0: Synthetic aperture radar microwave vision 3D imaging dataset. J Radars 2021; 10: 485–498 [Google Scholar]
- Wang W, Xu H, Wei H, et al. Progressive building facade detection for regularizing array InSAR point clouds. J Radars 2022; 11: 144–156 [Google Scholar]
- Fischler MA, Bolles RC. Random sample consensus. Commun ACM 1981; 24: 381-395. [Article] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.