Issue |
Natl Sci Open
Volume 3, Number 5, 2024
Special Topic: Microwave Vision and SAR 3D Imaging
|
|
---|---|---|
Article Number | 20240009 | |
Number of page(s) | 31 | |
Section | Information Sciences | |
DOI | https://doi.org/10.1360/nso/20240009 | |
Published online | 19 July 2024 |
- Chibiao D, Xiaolan Q, Feng X, et al. Synthetic aperture radar three-dimensional imaging—From TomoSAR and array InSAR to microwave vision. J Radars 2019; 8: 693–709 [Google Scholar]
- La Prade G An analytical and experimental study of stereo for radar. Photogramm Eng 1963; 29: 294-300 [Google Scholar]
- Leberl F, Raggam J, Kobrick M. On stereo viewing of SAR images. IEEE Trans Geosci Remote Sens 1985; GE-23: 110-117. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Schmitt M, Zhu XX. Demonstration of single-pass millimeterwave SAR tomography for forest volumes. IEEE Geosci Remote Sens Lett 2015; 13: 202-206. [Article] [Google Scholar]
- Zhu XX, Bamler R. Tomographic SAR inversion by L1-norm regularization—The compressive sensing approach. IEEE Trans Geosci Remote Sens 2010; 48: 3839-3846. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhu XX, Bamler R. Very high resolution spaceborne SAR tomography in urban environment. IEEE Trans Geosci Remote Sens 2010; 48: 4296-4308. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Pasquali P, Prati C, Rocca F, et al. A 3-D SAR experiment with EMSL data. 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications, Firenze: Italy, 1995; 1: 784–786 [CrossRef] [Google Scholar]
- Liang X, Wu Y, Ding C, et al. A novel 3-D reconstruction approach based on group sparsity of array InSAR. Sci Sin-Inf 2018; 48: 1051-1064. [Article] [CrossRef] [Google Scholar]
- Reigber A, Moreira A. First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans Geosci Remote Sens 2000; 38: 2142-2152. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Fornaro G, Lombardini F, Serafino F. Three-dimensional multipass SAR focusing: Experiments with long-term spaceborne data. IEEE Trans Geosci Remote Sens 2005; 43: 702-714. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Fornaro G, Lombardini F, Pauciullo A, et al. Tomographic processing of interferometric SAR data: Developments, applications, and future research perspectives. IEEE Signal Process Mag 2014; 31: 41-50. [CrossRef] [Google Scholar]
- Reale D, Fornaro G, Pauciullo A, et al. Tomographic imaging and monitoring of buildings with very high resolution SAR data. IEEE Geosci Remote Sens Lett 2011; 8: 661-665. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Caltagirone F. Status, results and perspectives of the Italian Earth Observation SAR COSMO-SkyMed. 2009 European Radar Conference (EuRAD), Rome: Italy, 2009; 330–334 [Google Scholar]
- Bi H, Jin S, Wang X, et al. High-resolution high-dimensional imaging of urban building based on GaoFen-3 SAR data. J Radars 2022; 11: 40–51 [Google Scholar]
- Giret R, Jeuland H, Enert P. A study of a 3D-SAR concept for a millimeter wave imaging radar onboard an UAV. First European Radar Conference (EuRAD), Amsterdam: Netherlands, 2004; 201–204 [Google Scholar]
- Nouvel J, Jeuland H, Bonin G, et al. A Ka band imaging radar: DRIVE on board ONERA motorglider. 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver: USA, 2006; 134–136 [CrossRef] [Google Scholar]
- Nouvel JF. ONERA DRIVE project. 2009 International Radar Conference "Surveillance for a Safer World" (RADAR 2009), Bordeaux: France, 2009; 1–4 [Google Scholar]
- Weiß M, Peters O, Ender J. First flight trials with ARTINO. 7th European Conference on Synthetic Aperture Radar, Friedrichshafen: Germany, 2008; 1–4 [Google Scholar]
- Klare J, Weiß M, Peters O, et al. ARTINO: A new high resolution 3D imaging radar system on an autonomous airborne platform. 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver: USA, 2006; 3842–3845 [CrossRef] [Google Scholar]
- Weiss M, Gilles M. Initial ARTINO radar experiments. 8th European Conference on Synthetic Aperture Radar, Aachen: Germany, 2010; 1–4 [Google Scholar]
- Zhang F, Liang X, Wu Y, et al. 3D surface reconstruction of layover areas in continuous terrain for multi-baseline SAR interferometry using a curve model. Int J Remote Sens 2015; 36: 2093-2112. [CrossRef] [Google Scholar]
- Jiao Z, Ding C, Qiu X, et al. Urban 3D imaging using airborne TomoSAR: Contextual information-based approach in the statistical way. ISPRS J Photogrammetry Remote Sens 2020; 170: 127-141. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Han D, Jiao Z, Zhou L, et al. Geometric constraints based 3D reconstruction method of tomographic SAR for buildings. Sci China Inf Sci 2023; 66: 112301. [Article] [CrossRef] [Google Scholar]
- Yan Q, Jiao Z, Qiu X, et al. Comparison between different TomoSAR imaging models for airborne platform flying at low altitude. Remote Sens 2022; 14: 5452. [Article] [CrossRef] [Google Scholar]
- Lin Y, Qiu X, Li H et al. Channel migration correction for low-altitude airborne SAR tomography based on keystone transform. IEEE Geosci Remote Sens Lett 2023; 20: 1-5 [Google Scholar]
- Du B, Qiu X, Zhang Z, et al. L1 minimization with perturbation for off-grid tomographic SAR imaging. J Radars 2022; 11: 62–70 [Google Scholar]
- Shi R, Zhang Z, Qiu X et al. A novel gradient descent least-squares (GDLSs) algorithm for efficient gridless line spectrum estimation with applications in tomographic SAR imaging. IEEE Trans Geosci Remote Sens 2023; 61: 1-13 [Google Scholar]
- Zhou G, Xu Z, Fan Y et al. HPHR-SAR-Net: Hyper-pixel high-resolution SAR imaging network based on nonlocal total variation . IEEE J Sel Top Appl Earth Obs Remote Sens 2023; 16: 8595-8608 [NASA ADS] [CrossRef] [Google Scholar]
- Chen J, Qiu X, Ding C, et al. CVCMFF net: Complex-valued convolutional and multifeature fusion network for building semantic segmentation of InSAR images. IEEE Trans Geosci Remote Sens 2022; 60: 5205714 [Google Scholar]
- Wang W, Xu H, Wei H, et al. Progressive building facade detection for regularizing array InSAR point clouds. J Radars 2022; 11: 144–156 [Google Scholar]
- Jiao Z, Qiu X, Dong S, et al. Preliminary exploration of geometrical regularized SAR tomography. ISPRS J Photogrammetry Remote Sens 2023; 201: 174-192. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhao Y, Xu J, Quan X, et al. Tomographic SAR imaging method based on sparse and low-rank structures. J Radars 2022; 11: 52–61 [Google Scholar]
- Li X, Zhang F, Li Y, et al. An elevation ambiguity resolution method based on segmentation and reorganization of TomoSAR point cloud in 3D mountain reconstruction. Remote Sens 2021; 13: 5118. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang S, Guo J, Zhang Y, et al. Multi-baseline SAR 3D reconstruction of vehicle from very sparse aspects: A generative adversarial network based approach. ISPRS J Photogrammetry Remote Sens 2023; 197: 36-55. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li J, Xu Z, Li Z, et al. An unsupervised CNN-based multichannel interferometric phase denoising method applied to TomoSAR imaging. IEEE J Sel Top Appl Earth Observations Remote Sens 2023; 16: 3784-3796. [Article] [CrossRef] [Google Scholar]
- Wang M, Zhang Z, Qiu X et al. ATASI-Net: An efficient sparse reconstruction network for tomographic SAR imaging with adaptive threshold. IEEE Trans Geosci Remote Sens 2023; 61: 1-18 [Google Scholar]
- Qiu X, Jiao Z, Yang Z et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system. J Radars 2022; 11: 1-19 [Google Scholar]
- Qiu X, Jiao Z, Peng L et al. SARMV3D-1.0: Synthetic aperture radar microwave vision 3D imaging dataset. J Radars 2021; 10: 485-498 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.