Natl Sci Open
Volume 1, Number 3, 2022
Special Topic: Novel Optoelectronic Devices
Article Number 20220020
Number of page(s) 13
Section Information Sciences
Published online 10 August 2022
  • Pedretti G, Milo V, Ambrogio S, et al. Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity. Sci Rep 2017; 7: 5288. [Article] [Google Scholar]
  • Ielmini D, Wong HSP. In-memory computing with resistive switching devices. Nat Electron 2020; 1: 333-343. [Article] [Google Scholar]
  • Zhang C, Zhou H, Chen S, et al. Recent progress on 2D materials-based artificial synapses. Crit Rev Solid State Mater Sci 2021; [Google Scholar]
  • Porro S, Accornero E, Pirri CF, et al. Memristive devices based on graphene oxide. Carbon 2015; 85: 383-396. [Article] [CrossRef] [Google Scholar]
  • Jo SH, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 2010; 10: 1297-1301. [Article] [Google Scholar]
  • Schranghamer TF, Oberoi A, Das S. Graphene memristive synapses for high precision neuromorphic computing. Nat Commun 2020; 11: 1. [Article] [Google Scholar]
  • Sharbati MT, Du Y, Torres J, et al. Low-power, electrochemically tunable graphene synapses for neuromorphic computing. Adv Mater 2018; 30: 1802353. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Pickett MD, Medeiros-Ribeiro G, Williams RS. A scalable neuristor built with Mott memristors. Nat Mater 2013; 12: 114-117. [Article] [Google Scholar]
  • Goi E, Zhang Q, Chen X, et al. Perspective on photonic memristive neuromorphic computing. PhotoniX 2020; 1: 3. [Article] [Google Scholar]
  • Wang Z, Joshi S, Savel’ev S, et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat Electron 2018; 1: 137-145. [Article] [Google Scholar]
  • Strukov DB, Snider GS, Stewart DR, et al. The missing memristor found. Nature 2008; 453: 80-83. [Article] [Google Scholar]
  • Hui F, Grustan-Gutierrez E, Long S, et al. Graphene and related materials for resistive random access memories. Adv Electron Mater 2017; 3: 1600195. [Article] [CrossRef] [Google Scholar]
  • Ji Y, Cho B, Song S, et al. Stable switching characteristics of organic nonvolatile memory on a bent flexible substrate. Adv Mater 2010; 22: 3071-3075. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Wang H, Zou C, Zhou L, et al. Resistive switching characteristics of thin NiO film based flexible nonvolatile memory devices. MicroElectron Eng 2012; 91: 144-146. [Article] [Google Scholar]
  • Liang J, Chen Y, Xu Y, et al. Toward all-carbon electronics: Fabrication of graphene-based flexible electronic circuits and memory cards using maskless laser direct writing. ACS Appl Mater Interfaces 2010; 2: 3310-3317. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Yang YC, Pan F, Liu Q, et al. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett 2009; 9: 1636-1643. [Article] [Google Scholar]
  • Long S, Perniola L, Cagli C, et al. Voltage and power-controlled regimes in the progressive unipolar RESET transition of HfO2-based RRAM. Sci Rep 2013; 3: 2929. [Article] [Google Scholar]
  • Yu M, Cai Y, Wang Z, et al. Novel vertical 3D structure of TaOx-based RRAM with self-localized switching region by sidewall electrode oxidation. Sci Rep 2016; 6: 21020. [Article] [Google Scholar]
  • Sarkar B, Lee B, Misra V. Understanding the gradual reset in Pt/Al2O3/Ni RRAM for synaptic applications. Semicond Sci Technol 2015; 30: 105014. [Article] [Google Scholar]
  • Shim JH, Hu Q, Park MR, et al. Resistive switching characteristics of TiO2 thin films with different electrodes. J Korean Phys Soc 2015; 67: 936-940. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Sangwan VK, Jariwala D, Kim IS, et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat Nanotech 2015; 10: 403-406. [Article] [Google Scholar]
  • Wu W, Wu H, Gao B, et al. Suppress variations of analog resistive memory for neuromorphic computing by localizing Vo formation. J Appl Phys 2018; 124: 152108. [Article] [CrossRef] [Google Scholar]
  • Liu J, Yin Z, Cao X, et al. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes. ACS Nano 2010; 4: 3987-3992. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater 2007; 6: 183-191. [Article] [Google Scholar]
  • Rehman MM, Rehman HMMU, Gul JZ, et al. Decade of 2D-materials-based RRAM devices: A review. Sci Tech Adv Mater 2020; 21: 147-186. [Article] [Google Scholar]
  • Wan Z, Streed EW, Lobino M, et al. Laser-reduced graphene: Synthesis, properties, and applications. Adv Mater Technol 2018; 3: 1700315. [Article] [CrossRef] [Google Scholar]
  • Chen Y, Zhang B, Liu G, et al. Graphene and its derivatives: Switching on and off. Chem Soc Rev 2012; 41: 4688-4707. [Article] [PubMed] [Google Scholar]
  • Tian H, Chen HY, Ren TL, et al. Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology. Nano Lett 2014; 14: 3214-3219. [Article] [Google Scholar]
  • Wan Z, Umer M, Lobino M, et al. Laser induced self-N-doped porous graphene as an electrochemical biosensor for femtomolar miRNA detection. Carbon 2020; 163: 385-394. [Article] [CrossRef] [Google Scholar]
  • Yang C, Huang Y, Cheng H, et al. Rollable, stretchable, and reconfigurable graphene hygroelectric generators. Adv Mater 2019; 31: 1805705. [Article] [Google Scholar]
  • Zhao F, Cheng H, Hu Y, et al. Functionalized graphitic carbon nitride for metal-free, flexible and rewritable nonvolatile memory device via direct laser-writing. Sci Rep 2015; 4: 5882. [Article] [Google Scholar]
  • Bhaumik A, Narayan J. Wafer scale integration of reduced graphene oxide by novel laser processing at room temperature in air. J Appl Phys 2016; 120: 105304. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Cui P, Seo S, Lee J, et al. Nonvolatile memory device using gold nanoparticles covalently bound to reduced graphene oxide. ACS Nano 2011; 5: 6826-6833. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wan Z, Wang S, Haylock B, et al. Tuning the sub-processes in laser reduction of graphene oxide by adjusting the power and scanning speed of laser. Carbon 2019; 141: 83-91. [Article] [CrossRef] [Google Scholar]
  • Zhang Y, Guo L, Wei S, et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 2010; 5: 15-20. [Article] [Google Scholar]
  • Zhang YL, Guo L, Xia H, et al. Photoreduction of graphene oxides: Methods, properties, and applications. Adv Opt Mater 2014; 2: 10-28. [Article] [CrossRef] [Google Scholar]
  • Chen HY, Han D, Tian Y, et al. Mask-free and programmable patterning of graphene by ultrafast laser direct writing. Chem Phys 2014; 430: 13-17. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Romero FJ, Toral-Lopez A, Ohata A, et al. Laser-fabricated reduced graphene oxide memristors. Nanomaterials 2019; 9: 897. [Article] [Google Scholar]
  • Strong V, Dubin S, El-Kady MF, et al. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 2012; 6: 1395-1403. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Belete M, Kataria S, Turfanda A, et al. Nonvolatile resistive switching in nanocrystalline molybdenum disulfide with ion-based plasticity. Adv Electron Mater 2020; 6: 1900892. [Article] [CrossRef] [Google Scholar]
  • He CL, Zhuge F, Zhou XF, et al. Nonvolatile resistive switching in graphene oxide thin films. Appl Phys Lett 2009; 95: 232101. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhuge F, Hu B, He C, et al. Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon 2011; 49: 3796-3802. [Article] [CrossRef] [Google Scholar]
  • Hu B, Quhe R, Chen C, et al. Electrically controlled electron transfer and resistance switching in reduced graphene oxide noncovalently functionalized with thionine. J Mater Chem 2012; 22: 16422-16430. [Article] [Google Scholar]
  • Liang A, Zhang J, Wang F, et al. Transparent HfOx-based memristor with robust flexibility and synapse characteristics by interfacial control of oxygen vacancies movement. Nanotechnology 2021; 32: 145202. [Article] [Google Scholar]
  • Sangwan VK, Lee HS, Bergeron H, et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 2018; 554: 500-504. [Article] [Google Scholar]
  • Yoshida M, Suzuki R, Zhang Y, et al. Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci Adv 2015; 1: 1-7. [Article] [Google Scholar]
  • Zhu X, Li D, Liang X, et al. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat Mater 2019; 18: 141-148. [Article] [Google Scholar]
  • Li D, Wu B, Zhu X, et al. MoS2 memristors exhibiting variable switching characteristics toward biorealistic synaptic emulation. ACS Nano 2018; 12: 9240-9252. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang L, Liao W, Wong SL, et al. Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv Funct Mater 2019; 29: 1901106. [Article] [CrossRef] [Google Scholar]
  • Shi K, Wang Z, Xu H, et al. Complementary resistive switching observed in graphene oxide-based memory device. IEEE Electron Device Lett 2018; 39: 488-491. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Kim I, Siddik M, Shin J, et al. Low temperature solution-processed graphene oxide/Pr0.7Ca0.3MnO3 based resistive-memory device. Appl Phys Lett 2011; 99: 042101. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Gao S, Yi X, Shang J, et al. Organic and hybrid resistive switching materials and devices. Chem Soc Rev 2019; 48: 1531-1565. [Article] [PubMed] [Google Scholar]
  • Jetty P, Sahu DP, Jammalamadaka S. Analog resistive switching in reduced graphene oxide and chitosan-based bio-resistive random access memory device for neuromorphic computing applications. Physica Rapid Res Ltrs 2022; 16: 2100465. [Article] [Google Scholar]
  • Wang LH, Yang W, Sun QQ, et al. The mechanism of the asymmetric SET and RESET speed of graphene oxide based flexible resistive switching memories. Appl Phys Lett 2012; 100: 063509. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Mkhoyan KA, Contryman AW, Silcox J, et al. Atomic and electronic structure of graphene-oxide. Nano Lett 2009; 9: 1058-1063. [Article] [Google Scholar]
  • Saini P, Singh M, Thakur J, et al. Probing the mechanism for bipolar resistive switching in annealed graphene oxide thin films. ACS Appl Mater Interfaces 2018; 10: 6521-6530. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Du C, Cai F, Zidan MA, et al. Reservoir computing using dynamic memristors for temporal information processing. Nat Commun 2017; 8: 2204. [Article] [Google Scholar]
  • Sun L, Wang Z, Jiang J, et al. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci Adv 2021; 7: eabg1455. [Article] [Google Scholar]
  • Appeltant L, Soriano MC, Van der Sande G, et al. Information processing using a single dynamical node as complex system. Nat Commun 2011; 2: 1-6. [Article] [Google Scholar]
  • Tanaka G, Yamane T, Héroux JB, et al. Recent advances in physical reservoir computing: A review. Neural Networks 2019; 115: 100-123. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.