Issue |
Natl Sci Open
Volume 2, Number 4, 2023
Special Topic: Two-dimensional Materials and Devices
|
|
---|---|---|
Article Number | 20230015 | |
Number of page(s) | 18 | |
Section | Materials Science | |
DOI | https://doi.org/10.1360/nso/20230015 | |
Published online | 07 June 2023 |
- Mehonic A, Kenyon AJ. Brain-inspired computing needs a master plan. Nature 2022; 604: 255-260. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dennard RH, Gaensslen FH, Yu HN, et al. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J Solid-State Circuits 1974; 9: 256-268. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Waldrop MM. The chips are down for Moore’s law. Nature 2016; 530: 144-147. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Duan X, Shin HJ, et al. Promises and prospects of two-dimensional transistors. Nature 2021; 591: 43-53. [Article] [Google Scholar]
- Liu C, Chen H, Wang S, et al. Two-dimensional materials for next-generation computing technologies. Nat Nanotechnol 2020; 15: 545-557. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li Y, Hwang CH, Li TY. Random-dopant-induced variability in nano-CMOS devices and digital circuits. IEEE Trans Electron Devices 2009; 56: 1588-1597. [Article] [Google Scholar]
- Convertino C, Zota CB, Schmid H, et al. A hybrid III-V tunnel FET and MOSFET technology platform integrated on silicon. Nat Electron 2021; 4: 162-170. [Article] [CrossRef] [Google Scholar]
- Qiu Y, Cristiano F, Huet K, et al. Extended defects formation in nanosecond laser-annealed ion implanted silicon. Nano Lett 2014; 14: 1769-1775. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang QH, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech 2012; 7: 699-712. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater 2017; 2: 17033. [Article] [CrossRef] [Google Scholar]
- Akinwande D, Huyghebaert C, Wang CH, et al. Graphene and two-dimensional materials for silicon technology. Nature 2019; 573: 507-518. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cheng R, Wang F, Yin L, et al. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat Electron 2018; 1: 356-361. [Article] [CrossRef] [Google Scholar]
- Wu F, Tian H, Shen Y, et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 2022; 603: 259-264. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chhowalla M, Jena D, Zhang H. Two-dimensional semiconductors for transistors. Nat Rev Mater 2016; 1: 16052. [Article] [CrossRef] [Google Scholar]
- Lin YF, Xu Y, Wang ST, et al. Ambipolar MoTe2 transistors and their applications in logic circuits. Adv Mater 2014; 26: 3263-3269. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liu C, Chen H, Hou X, et al. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat Nanotechnol 2019; 14: 662-667. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shalf J. The future of computing beyond Moore’s Law. Phil Trans R Soc A 2020; 378: 20190061. [Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Lee H, Park JD, Shin C. Study of random variation in germanium-source vertical tunnel FET. IEEE Trans Electron Devices 2016; 63: 1827-1834. [Article] [Google Scholar]
- Kim MW, Kim JH, Kim HJ, et al. Simple Ge/Si bilayer junction-based doping-less tunnel field-effect transistor. Nanotechnology 2023; 34: 095201. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Xu M, Liang T, Shi M, et al. Graphene-like two-dimensional materials. Chem Rev 2013; 113: 3766-3798. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kong L, Zhang X, Tao Q, et al. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat Commun 2020; 11: 1866. [Article] [Google Scholar]
- Chen H, Xue X, Liu C, et al. Logic gates based on neuristors made from two-dimensional materials. Nat Electron 2021; 4: 399-404. [Article] [CrossRef] [Google Scholar]
- Xiang L, Zhang H, Dong G, et al. Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nat Electron 2018; 1: 237-245. [Article] [CrossRef] [Google Scholar]
- Yu L, El-Damak D, Radhakrishna U, et al. Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett 2016; 16: 6349-6356. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wachter S, Polyushkin DK, Bethge O, et al. A microprocessor based on a two-dimensional semiconductor. Nat Commun 2017; 8: 14948. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhu K, Wen C, Aljarb AA, et al. The development of integrated circuits based on two-dimensional materials. Nat Electron 2021; 4: 775-785. [Article] [CrossRef] [Google Scholar]
- Migliato Marega G, Zhao Y, Avsar A, et al. Logic-in-memory based on an atomically thin semiconductor. Nature 2020; 587: 72-77. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jeong JW, Choi YE, Kim WS, et al. Tunnelling-based ternary metal-oxide-semiconductor technology. Nat Electron 2019; 2: 307-312. [Article] [CrossRef] [Google Scholar]
- Zheng Z, Zhang L, Song W, et al. Gallium nitride-based complementary logic integrated circuits. Nat Electron 2021; 4: 595-603. [Article] [CrossRef] [Google Scholar]
- Huang M, Li S, Zhang Z, et al. Multifunctional high-performance van der Waals heterostructures. Nat Nanotech 2017; 12: 1148-1154. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gao G, Wan B, Liu X, et al. Tunable tribotronic dual-gate logic devices based on 2D MoS2 and black phosphorus. Adv Mater 2018; 30: 1705088. [Article] [CrossRef] [Google Scholar]
- Liu Y, Zhang G, Zhou H, et al. Ambipolar barristors for reconfigurable logic circuits. Nano Lett 2017; 17: 1448-1454. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wu P, Reis D, Hu XS, et al. Two-dimensional transistors with reconfigurable polarities for secure circuits. Nat Electron 2021; 4: 45-53. [Article] [Google Scholar]
- Resta GV, Sutar S, Balaji Y, et al. Polarity control in WSe2 double-gate transistors. Sci Rep 2016; 6: 29448. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yi J, Sun X, Zhu C, et al. Double-gate MoS2 field-effect transistors with full-range tunable threshold voltage for multifunctional logic circuits. Adv Mater 2021; 33: 2101036. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Resta GV, Balaji Y, Lin D, et al. Doping-free complementary logic gates enabled by two-dimensional polarity-controllable transistors. ACS Nano 2018; 12: 7039-7047. [Article] [Google Scholar]
- Tang W, Zhang X, Yu H, et al. A van der Waals ferroelectric tunnel junction for ultrahigh-temperature operation memory. Small Methods 2022; 6: 2101583. [Article] [CrossRef] [Google Scholar]
- Sun X, Zhu C, Yi J, et al. Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. Nat Electron 2022; 5: 752-760. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Wang Z, Li Q, Chen Y, et al. The ambipolar transport behavior of WSe2 transistors and its analogue circuits. NPG Asia Mater 2018; 10: 703-712. [Article] [CrossRef] [Google Scholar]
- Zeng S, Liu C, Huang X, et al. An application-specific image processing array based on WSe2 transistors with electrically switchable logic functions. Nat Commun 2022; 13: 56. [Article] [Google Scholar]
- He Q, Liu Y, Tan C, et al. Quest for p-type two-dimensional semiconductors. ACS Nano 2019; 13: 12294-12300. [Article] [Google Scholar]
- Waltl M, Knobloch T, Tselios K, et al. Perspective of 2D integrated electronic circuits: Scientific pipe dream or disruptive technology?. Adv Mater 2022; 34: 2201082. [Article] [CrossRef] [Google Scholar]
- Ding L, Zhang Z, Liang S, et al. CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat Commun 2012; 3: 677. [Article] [Google Scholar]
- Zimmermann R, Fichtner W. Low-power logic styles: CMOS versus pass-transistor logic. IEEE J Solid-State Circuits 1997; 32: 1079-1090. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Jeon PJ, Kim JS, Lim JY, et al. Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl Mater Interfaces 2015; 7: 22333-22340. [Article] [Google Scholar]
- Wang X, Chen X, Ma J, et al. Pass-transistor logic circuits based on wafer-scale 2D semiconductors. Adv Mater 2022; 34: 2202472. [Article] [CrossRef] [Google Scholar]
- Pan C, Wang CY, Liang SJ, et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat Electron 2020; 3: 383-390. [Article] [CrossRef] [Google Scholar]
- Tong L, Peng Z, Lin R, et al. 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science 2021; 373: 1353-1358. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liu L, Li T, Ma L, et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 2022; 605: 69-75. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kang K, Xie S, Huang L, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015; 520: 656-660. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Poh SM, Zhao X, Tan SJR, et al. Molecular beam epitaxy of highly crystalline MoSe2 on hexagonal boron nitride. ACS Nano 2018; 12: 7562-7570. [Article] [Google Scholar]
- Hämäläinen J, Mattinen M, Mizohata K, et al. Atomic layer deposition of rhenium disulfide. Adv Mater 2018; 30: 1703622. [Article] [CrossRef] [Google Scholar]
- Yang P, Wang D, Zhao X, et al. Epitaxial growth of inch-scale single-crystal transition metal dichalcogenides through the patching of unidirectionally orientated ribbons. Nat Commun 2022; 13: 3238. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Choi SH, Yun SJ, Won YS, et al. Large-scale synthesis of graphene and other 2D materials towards industrialization. Nat Commun 2022; 13: 1484. [Article] [Google Scholar]
- Chubarov M, Choudhury TH, Hickey DR, et al. Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano 2021; 15: 2532-2541. [Article] [Google Scholar]
- Zhu J, Wang ZC, Dai H, et al. Boundary activated hydrogen evolution reaction on monolayer MoS2. Nat Commun 2019; 10: 1348. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yang P, Zhang S, Pan S, et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 2020; 14: 5036-5045. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang X, Gao L, Yu H, et al. Single-atom vacancy doping in two-dimensional transition metal dichalcogenides. Acc Mater Res 2021; 2: 655-668. [Article] [Google Scholar]
- Zhang X, Liao Q, Liu S, et al. Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat Commun 2017; 8: 15881. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Rhodes D, Chae SH, Ribeiro-Palau R, et al. Disorder in van der Waals heterostructures of 2D materials. Nat Mater 2019; 18: 541-549. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gao L, Liao Q, Zhang X, et al. Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv Mater 2020; 32: 1906646. [Article] [Google Scholar]
- Cheng L, Zhang C, Liu Y. Why two-dimensional semiconductors generally have low electron mobility. Phys Rev Lett 2020; 125: 177701. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Xia F, Perebeinos V, Lin Y, et al. The origins and limits of metal-graphene junction resistance. Nat Nanotech 2011; 6: 179-184. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tongay S, Zhou J, Ataca C, et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett 2013; 13: 2831-2836. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kim C, Moon I, Lee D, et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 2017; 11: 1588-1596. [Article] [Google Scholar]
- Neumaier D, Pindl S, Lemme MC. Integrating graphene into semiconductor fabrication lines. Nat Mater 2019; 18: 525-529. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yang P, Zou X, Zhang Z, et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat Commun 2018; 9: 979. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Quellmalz A, Wang X, Sawallich S, et al. Large-area integration of two-dimensional materials and their heterostructures by wafer bonding. Nat Commun 2021; 12: 917. [Article] [Google Scholar]
- Jain A, Bharadwaj P, Heeg S, et al. Minimizing residues and strain in 2D materials transferred from PDMS. Nanotechnology 2018; 29: 265203. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liang X, Sperling BA, Calizo I, et al. Toward clean and crackless transfer of graphene. ACS Nano 2011; 5: 9144-9153. [Article] [Google Scholar]
- Kang K, Lee KH, Han Y, et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 2017; 550: 229-233. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang Y, Chhowalla M. Making clean electrical contacts on 2D transition metal dichalcogenides. Nat Rev Phys 2022; 4: 101-112. [Article] [Google Scholar]
- Liu W, Kang J, Sarkar D, et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett 2013; 13: 1983-1990. [Article] [CrossRef] [PubMed] [Google Scholar]
- Schulman DS, Arnold AJ, Das S. Contact engineering for 2D materials and devices. Chem Soc Rev 2018; 47: 3037-3058. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kwon G, Choi YH, Lee H, et al. Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat Electron 2022; 5: 241-247. [Article] [CrossRef] [Google Scholar]
- Liu Y, Guo J, Zhu E, et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018; 557: 696-700. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang X, Yu H, Tang W, et al. All-van-der-Waals barrier-free contacts for high-mobility transistors. Adv Mater 2022; 34: 2109521. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhang X, Liu B, Gao L, et al. Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions. Nat Commun 2021; 12: 1522. [Article] [Google Scholar]
- Wang Y, Kim JC, Wu RJ, et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019; 568: 70-74. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shen PC, Su C, Lin Y, et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 2021; 593: 211-217. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li W, Gong X, Yu Z, et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 2023; 613: 274-279. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang Y, Kim JC, Li Y, et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 2022; 610: 61-66. [Article] [CrossRef] [PubMed] [Google Scholar]
- Luo P, Liu C, Lin J, et al. Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat Electron 2022; 5: 849-858. [Article] [CrossRef] [Google Scholar]
- Li W, Zhou J, Cai S, et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat Electron 2019; 2: 563-571. [Article] [CrossRef] [Google Scholar]
- Snure M, Vangala SR, Prusnick T, et al. Two-dimensional BN buffer for plasma enhanced atomic layer deposition of Al2O3 gate dielectrics on graphene field effect transistors. Sci Rep 2020; 10: 14699. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sheng Y, Chen X, Liao F, et al. Gate stack engineering in MoS2 field-effect transistor for reduced channel doping and hysteresis effect. Adv Electron Mater 2021; 7: 2000395. [Article] [CrossRef] [Google Scholar]
- Yang AJ, Han K, Huang K, et al. van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors. Nat Electron 2022; 5: 233-240. [Article] [CrossRef] [Google Scholar]
- Mao J, Wu S, Ding G, et al. A van der Waals integrated damage-free memristor based on layered 2D hexagonal boron nitride. Small 2022; 18: 2106253. [Article] [CrossRef] [Google Scholar]
- Huang JK, Wan Y, Shi J, et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 2022; 605: 262-267. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lanza M, Smets Q, Huyghebaert C, et al. Yield, variability, reliability, and stability of two-dimensional materials based solid-state electronic devices. Nat Commun 2020; 11: 5689. [Article] [Google Scholar]
- Das S, Sebastian A, Pop E, et al. Transistors based on two-dimensional materials for future integrated circuits. Nat Electron 2021; 4: 786-799. [Article] [CrossRef] [Google Scholar]
- Sebastian A, Pendurthi R, Choudhury TH, et al. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat Commun 2021; 12: 693. [Article] [Google Scholar]
- Wang S, Liu X, Xu M, et al. Two-dimensional devices and integration towards the silicon lines. Nat Mater 2022; 21: 1225-1239. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Cheng Z, Pang CS, Wang P, et al. How to report and benchmark emerging field-effect transistors. Nat Electron 2022; 5: 416-423. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Lanza M, Waser R, Ielmini D, et al. Standards for the characterization of endurance in resistive switching devices. ACS Nano 2021; 15: 17214-17231. [Article] [Google Scholar]
- Holler M, Guizar-Sicairos M, Tsai EHR, et al. High-resolution non-destructive three-dimensional imaging of integrated circuits. Nature 2017; 543: 402-406. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chen S, Mahmoodi MR, Shi Y, et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat Electron 2020; 3: 638-645. [Article] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.